偶联剂对木塑复合材料冲击强度与热膨胀性能的影响

黄润州,WUQinglin,张洋

南京林业大学学报(自然科学版) ›› 2012, Vol. 36 ›› Issue (03) : 91-95.

PDF(452346 KB)
PDF(452346 KB)
南京林业大学学报(自然科学版) ›› 2012, Vol. 36 ›› Issue (03) : 91-95. DOI: 10.3969/j.jssn.1000-2006.2012.03.019
研究论文

偶联剂对木塑复合材料冲击强度与热膨胀性能的影响

  • 黄润州1,2,WU Qinglin2*,张 洋1
作者信息 +

Effects of coupling agent treatment on impact strength and thermal expansion performance of wood plastic composite

  • HUANG Runzhou1,2 , WU Qinglin2*, ZHANG Yang1
Author information +
文章历史 +

摘要

以高密度聚乙烯(HDPE 6761)为基体,松木纤维(Pine)为增强材料,MAPE(Epolene G2608)、MAPP(Exxelor VA1840)和Fusabond(WPC576D)为偶联剂,采用注塑法制备木塑复合材料(WPC),并测定了HDPE基体和不同配比WPC的热膨胀性能与冲击强度。结果表明:WPC 的冲击强度明显低于高密度聚乙烯板(HDPE),较低的冲击强度是木塑复合材料的一个主要缺点,偶联剂的加入可以提高WPC的冲击强度; WPC的热膨胀系数明显低于HDPE,虽然偶联剂的加入可以较好地抑制热膨胀,但WPC的热膨胀系数的主要影响因素是木纤维的加入量及塑料基体的种类。

Abstract

Influences of different coupling agent and ratio of modifier content on impact strength and various linear thermal expansion coefficients of composites were investigated in this paper. The results showed low impact strength was the major drawback of WPC in many end-use applications. The variation of impact strength of composites with coupling agents is caused by coupling agents. The different matrix and ratio of modifier content exerted different influences on the various linear thermal expansion coefficients of composites in three temperature zones. The reduction of the LTEC appear in HDPE/Pine composites was caused by adding filler and coupling agent.

引用本文

导出引用
黄润州,WUQinglin,张洋. 偶联剂对木塑复合材料冲击强度与热膨胀性能的影响[J]. 南京林业大学学报(自然科学版). 2012, 36(03): 91-95 https://doi.org/10.3969/j.jssn.1000-2006.2012.03.019
HUANG Runzhou1,2 , WU Qinglin, ZHANG Yang. Effects of coupling agent treatment on impact strength and thermal expansion performance of wood plastic composite[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2012, 36(03): 91-95 https://doi.org/10.3969/j.jssn.1000-2006.2012.03.019
中图分类号: S781   

参考文献

[1] Susan E Selke,Indrek Wichman. Wood fiber/polyolefin composites[J]. Composites Part A, 2004,35(3):321-326.
[2] Antonio Norio Nakagaito. The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose Hiroyuki Yano[J]. Cellulose,2008:15(4):555-559.
[3] Smit P M, Wolcott M P. Opportunities for wood/natural fiber-plastic composites in residential and industrial applications[J]. Forest Products Journal, 2006,56(3):4-11.
[4] Harper D P,Wolcott M P, Laborie. The impact of polypropylene-graft-maleic anhydride on the crystallization and dynamic mechanical properties of isotactic polypropylene[J]. Journal of Applied Polymer Science, 2009,111(2):753-758.
[5] Matsuda Y, Hara M, Mano T, et al. Effect of the compatibility on toughness of injection-molded polypropylene blended with EPR and SEBS[J]. Polymer Engineer Science, 2006,46(1):29-38.
[6] Greco R, Mancarella C, Martuscelli E,et al. Effect of EPR composition on structure, morphology and mechanical properties of iPP/EPR alloys[J]. Polymer, 1987,28(11):1929-1936.
[7] Yokoyama Y, Ricco T. Toughening of polypropylene by different elastomcric systems[J]. Polymer, 1998,39(16):3675-3681.
[8] Chow W S, Bakar A A, Ishak Z A M,et al. Effect of maleic anhydride-grafted ethylene propylene rubber on the mechanical, rheological and morphological properties of organoclay reinforced polyamide 6/polypropylene nano composites[J]. Europe Polymer Journal,2005,41(4):687-696.
[9] H S Yang, Wolcott M P, Kim H. Thermal properties of lignocellulosic filler-thermoplastic polymer bio-composites[J]. Journal of Thermal Analysis and Calorimetry, 2005, 82(1): 157-160.
[10] Oksmanand K, Clemons C. Mechanical properties and morphology of impact modified polypropylene wood flour composites[J]. Journal of Applied Polymer Science, 1998, 67(9):1503-1513.
[11] Saheb D N, Jog J P. Natural fiber polymer composites: A review[J]. Advance in Polymer Technology, 1999, 18(4):351-363.
[12] Mohanty S, Vermaand S K, Nayak S K. Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites[J].Composite Science and Technology, 2006, 66(3):538-547.
[13] George J, Janardhanan R, Anand J, et al. Melt rheological behavior of short pineapple-fiber-reinforced low density polyethylene composites[J]. Polymer, 1996, 37(24):5421-5431.
[14] Kazayawoko, Balatineczand M, Woodhams J. Diffuse reflectance fourier transform infrared spectra of wood fibers treated with maleated polypropylenes[J].Journal of Applied Polymer Science, 1997, 66(6):1163.
[15] Kazayawoko, Balatineczand M, Sodhi. X-ray photoelectron spectroscopy of maleated polypropylene treated wood fibers in a high-intensity thermokinetic mixer[J]. Wood Science and Technology,1999, 33(5):359-372.

基金

收稿日期:2011-08-12 修回日期:2012-04-16 基金项目:美国农业部/能源部生物质启动研究项目(68-3A75-6-508); 江苏省优势学科建设工程优秀研究生学位论文培养计划 第一作者:黄润州,博士生。*通信作者:WU Qinglin, 教授。E-mail:runzhouhuang@gmail.com。引文格式:黄润州,WU Qinglin,张洋. 偶联剂对木塑复合材料冲击强度与热膨胀性能的影响[J]. 南京林业大学学报:自然科学版,2012,36(3):91-95.

PDF(452346 KB)

Accesses

Citation

Detail

段落导航
相关文章

/