摘要
在正常水分(25 %~30 %)、中度干旱(15 %~20 %)、重度干旱(5 %~10 %)3种水分条件下,设对照(A)、接种内生菌根真菌(B)、接种外生菌根真菌(C)、混合接种(D)4个处理,利用盆栽实验研究了菌根真菌对滇柏、楸树地下生物量和根系N、P含量以及根系形态的影响。结果表明:接种菌根真菌后,根系生物量都有所增加,但滇柏以外生菌和混合菌接种的效果更显著,而楸树以内生菌的效果最为显著。除重度干旱以外,滇柏接种处理的氮和磷含量都要高于对照处理,楸树B和D处理的氮磷含量要高于对照。其中滇柏根系的平均直径、总长度以及表面积都有所增加,接种效果表现为D>C>B>A。接种内生菌根对楸树影响明显,根系形态和对照组相比呈显著性差异,外生菌根无明显作用。重度干旱条件下,接种处理对两种树种各指标的影响都较小。可见,接种菌根真菌能够提高滇柏、楸树的抗旱性。
Abstract
The potted seedlings of Cupressus duclouxiana and Catalpa bungei were used to examine their response under different moisture content conditions, including normal moisture (25 %-30 %), moderate drought (15 %-20 %) and severe drought (5 %-10 %). The inoculated groups were the control group (A), VAM group (B), ectomycorrhizal(C) and mixture group (D, VAM+Ectomycorrhiza). After 150 days of treatment, the root biomass, root morphology and contents of nitrogen and phosphorus were measured. The results showed that after the seedlings were inoculated with mycorrhizal fungi, root biomass increased. The root biomass of Cupressus duclouxiana seedlings increased significantly under C and D treatments, however, B and D treatment significantly increased the root biomass of Catalpa bungei. Except severe drought,N and P contents in roots of Cupressus duclouxiana with mycorrhizal fungus inoculated were higher than those of control, whereas only with B and D treatment, the N and P contents of Catalpa bungei roots were higher than those of CK. After the seedlings inoculated with mycorrhizal fungi, the mean root diameter, total root length and root surface area of Cupressus duclouxiana increased; meanwhile, endomycorrhiza can positively affect the growth of the roots of Catalpa bungei seedlings.Our research showed that mycorrhizal fungus inoculation could enhance the drought resistence ability of Cupressus duclouxiana and Catalpa bungei seedlings in varying degrees.
王如岩,于水强,张金池*,周垂帆,陈莉莎.
干旱胁迫下接种菌根真菌对滇柏和楸树幼苗根系的影响[J]. 南京林业大学学报(自然科学版). 2012, 36(06): 23-27 https://doi.org/10.3969/j.jssn.1000-2006.2012.06.005
WANG Ruyan,YU Shuiqiang,ZHANG Jinchi*,ZHOU Chuifan,CHEN Lisha.
Effects of mycorrhizal fungus inoculation on the root of Cupressus duclouxiana and Catalpa bungei seedlings under drought stress[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2012, 36(06): 23-27 https://doi.org/10.3969/j.jssn.1000-2006.2012.06.005
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]屠玉麟,杨军.贵州喀斯特灌丛群落类型研究[J].贵州师范大学学报:自然科学版,1995,13(3):27-43.
[2]朱守谦,何纪星,魏鲁明,等.茂兰喀斯特森林小生境特征研究[C]//朱守谦. 喀斯特森林生态学研究:Ⅲ.贵阳:贵州科技出版社,2003.
[3]Norman J R,Atkinson D,Hooker J E. Arbuscular mycorrhizal fungal-induced alteration to root architecture in strawberry and induced resistance to the root pathogen Phytophthora fragariae[J].Plant and Soil,1996,185(2):191-198.
[4]Espeleta J F,Eissenstant D M,Graham J H.Citrus root responses to fungi[J].Soil Biology and Biochemistry, 1999,24:897-903.
[5]Rilling M C,Steinberg P D.Glomalin production by an arbuscular mycorrhizal fungus:a mechanism of habitat modification[J].Soil Biology and Biochemistry,2002,34(2): 1371-1374.
[5]Wu Qiangsheng,Xia Renxue,Zou Yingning. Improved soil structure and citrus growth after inoculation with three arbuscularmycorrhizal fungi under drought stress[J]. European Journal of Soil Biology, 2008,44(1):122-128.
[7]Mahendra R, Deepak A, Singh A. Positive growth responses of the medicinal plants Spilanthes calva and Withania somniferato inoculation by Piriformospora indicain a field trial[J].Mycorrhiza, 2001,11(3):123-128.
[8]Tranvan H, Habricot Y, Jeannette E, et al. Dynamics of symbiotic establishment between an IAAoverproducing mutant of the ectomycorrhizal fungus Hebeloma cylindrosporum and Pinus pinaster[J]. Tree Physiology, 2000,20(2):123-129.
[9]Padilla I M G,Encina C L.Changes in root morphology accompanying mycorrhizal alleviation of phosphorus deficiency in micropropagated Annona cherimola Mill[J]. Plants Sci Hortic, 2005,106(3):360-369.
[10]Gehring C A. Growth responses to arbuscular mycorrhiza by rain forest seedlings vary with light intensity and tree species[J].Plant Ecology, 2003,167(1): 127-139.
[11]Atkinson D, Black K E, Forbes P J,et al. The influence of arbuscular mycorrhizal colonization and environment on root development in soil[J]. European Journal of Soil Science, 2003,54(4): 751-757.
[12]何跃军,钟章成,刘济明,等.VA真菌对构树(Broussonetia papyrifera)幼苗物质代谢的影响[J].生态学报,2007,27(12):5455-5462.
[13]王如岩.菌根真菌对喀斯特地区幼苗生长状况的影响[D].南京:南京林业大学,2011.
[14]黄世臣,李熙英.干旱胁迫条件下接种菌根菌对山杏实生苗抗旱性的影响[J].东北林业大学学报,2007,35(1):31-33.
[15]吴强盛, 夏仁学. 干旱胁迫下丛枝菌根真菌对枳实生苗生长和渗透调节物质含量的影响[J]. 植物生理与分子生物学学报,2004,30(5):583-588.
[16]仝瑞建,杨晓红,李东彦.丛枝菌根真菌种间差异对柚苗营养生长及矿质含量的影响[J].应用生态学报,2006,17(7):1229-1233.
[17]陈梅梅,陈保冬,王新军,等.不同磷水平土壤接种丛枝菌根真菌对植物生长和养分吸收的影响[J].生态学报,2009,29(4):1980-1986.
[18]赵昕,阎秀峰.丛枝菌根对喜树幼苗生长和氮、磷吸收的影响[J].植物生态学报,2006,30(6):947-953.
[19]Berntson G M,Wayne P M. Characterizing the size dependence of resource acquisition within crowded plairt populations[J]. Ecology, 2000,81:1072-1085.
[20]Yue Sun, Gu JiaCun, Zhuang HaiFeng. Effects of ectomycorrhizal colonization and nitrogen fertilization on morphology of root tips in a Larix gmelinii plantation in northeastern China[J]. Ecol Res,2010,25:295-302.
基金
收稿日期:2011-05-19修回日期:2012-09-22
基金项目:国家自然科学基金项目(30872076/C161303,30800137)
第一作者:王如岩,硕士。
*通信作者:张金池,教授。
Email: nfujczhang@sina.com。
引文格式:王如岩,于水强,张金池,等. 干旱胁迫下接种菌根真菌对滇柏和楸树幼苗根系的影响[J]. 南京林业大学学报:自然科学版,2012,36(6):23-27.