通过对公路施工网络计划优化方法进行分析,建立了符合公路施工网络计划特点的质量-工期-费用的优化模型;利用拥挤度计算和非劣排序,以及精英保留策略的遗传算法,并采用工序染色体编码的方法,缩小了公路施工网络计划优化程序对有效解的搜索空间;通过轮盘赌选择、算术交叉、变异等操作,得到一个Pareto最优解集,供决策者从中选择出最符合实际情况的方案;提出了改进的NSGA-Ⅱ多目标优化方法。通过工程实例,采用改进的NSGA-Ⅱ对施工方案进行优化,利用MATLAB 7.0编程仿真,可获得Pareto的最优解集。
Abstract
Through the analysis of network planning optimization method for highway construction, the qualitydurationcostoptimization model with the characteristics of network planning for highway construction was established. The multiobjective optimization method based on NSGAⅡ was put up. The method was GA that using nondominated sort about crowding distance and elitism strategy. Through chromosome coding based on process, the search space of solution was optimized. Through the roulette wheel selection, arithmetic crossover and mutation operation, the Pareto optimal solution collection, that could allow decisionmakers to choose, was got. At last, through engineering examples, this paper confirmed that the optimization method could solve the Pareto optimal solution collection from establishing the optimization model, using MATLAB 7.0 simulation program.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]张丽霞,侍克斌.施工网络进度计划的多目标优化[J].系统工程理论与实践,2003(1):56-61.
[2]姚玉玲.公路施工项目网络计划多目标综合优化[J].长安大学学报:社会科学版,2008(3):43-48.
[3]刘莉.多目标优化模型在工程网络计划中的应用研究[J].平顶山工学院学报,2008(6):10-13.
[4]Schwefel H P. Evolution and Optimum Seeking[M]. New York: John Wiley & Sons, 1995.
[5]Deb K, Mohan M, Mishra S. Evaluating the epsilondominance based multiobjective evolutionary for a quick computation of ParetoOptimal solutions[J]. Evolutionary Computation, 2005,13:501-525.
[5]Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithms: NSGA2[J]. IEEE Transactions on Evolutionary Computation, 2002,6(2):182-197.
[7]Manoj K J, Schonfeld P. A highway alignment optimization model using geographic information systems[J]. Transportation Research Part A,2004,38:455-481.
[8]涂鹏,王星华,蒋红斐.基于遗传算法的道路平面线形优化设计[J].华东公路,2007(1):10-12.
[9]周瑞忠,潘是伟.基于遗传算法的深基坑支护结构优化设计[J].土木工程学报,2004(6):87-91.
[10]樊涛.基于遗传算法的路基土石方数量估算方法[J].中国公路学报,2006,19(6):45-48.
[11]魏武,张亚楠,武林林.基于遗传算法的改进AdaBoost算法在汽车识别中的应用[J].公路交通科技,2010,27(2):114-118.
[12]中华人民共和国交通部.JTG B06—2007,公路工程基本建设项目概算预算编制办法[S].北京:中国标准出版社,2007.
[13]廖小辉,黄新,张效忠.多目标非线性优化方法在公路选线中的应用[J].南京林业大学学报:自然科学版,2010,34(1):113-116.
[14]雷德明,严新平.多目标智能优化算法及其应用[M].北京:科学出版社,2009.
[15]Goldberg D E. Genetic Algorithm in Search, Optimization and Machine Learning[M]. N J:Addison Wesley,1989.
[16]鲍江宏.用遗传算法实现罚函数法解多选择背包问题[J].计算机工程与设计,2008(17):4518-4524.
基金
收稿日期:2011-10-18修回日期:2012-04-24
基金项目:浙江省自然科学基金项目(Y1100210);衢州市科技局项目(20112101);高等学校博士学科重点专项科研基金资助项目(20093204110008)
第一作者:廖小辉,讲师,博士生。*通信作者:黄新,教授。Email: huangxin@njfu.com.cn。
引文格式:廖小辉,黄新,陈磊. 公路施工网络计划多目标遗传优化[J]. 南京林业大学学报:自然科学版,2012,36(6):125-129.