[1] Howarth C. Molecular responses of plants to an increased incidence of heat shock[J]. Plant, Cell & Environment, 1991, 14(8): 831-841. [2] Dong Z, Zhang J. Initiation factor eIF3 and regulation of mRNA translation, cell growth, and cancer[J]. Critical Reviews in Oncology/Hematology, 2006, 59(3): 169-180. [3] Pyronnet S, Sonenberg N. Cell-cycle-dependent translational control[J]. Current Opinion in Genetics & Development, 2001, 11(1): 13-18. [4] Groul T, Ivanov P, FrydlováI, et al. Robust heat shock induces eIF2α-phosphorylation-independent assembly of stress granules containing eIF3 and 40 s ribosomal subunits in budding yeast, Saccharomyces cerevisiae[J]. Journal of Cell Science, 2009, 122(12): 2078-2088. [5] Singh G, Jain M, Kulshreshtha R, et al. Expression analysis of genes encoding translation initiation factor 3 subunit G(TaeIF3G)and vesicle-associated membrane protein-associated protein(TaVAP)in grought tolerant and susceptible cultivars of wheat[J]. Plant Science, 2007, 173(6): 660-669. [6] Rangan L, Rout A, Sudarshan M, et al. Molecular cloning, expression and mapping of the translational initiation factor eIF1 gene in Oryza sativa[J]. Functional Plant Biology, 2009, 36(5): 442-452. [7] Wang L, Xu C, Wang C, et al. Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance[J]. BMC Plant Biology, 2012, 12(1): 1471-2229. [8] 张道远, 张娟, 谭敦炎, 等. 国产柽柳科3属6种植物营养枝的解剖观察[J]. 西北植物学报, 2003, 23(3): 382-388.Zhang D Y, Zhang J, Tan D Y, et al. Anatomical observation of young branches of 6 species of Tamaricaceae from China[J].Acta Bot Boreal-Occident Sin, 2003, 23(3): 382-388. [9] 尹林克. 中亚荒漠生态系统中的关键种——柽柳(Tamarix spp.)[J]. 干旱区研究, 1995, 12(3): 43-47. Yin L K. Tamarix spp.—The keystone species of desert ecosystem[J]. Arid Zone Reasearch, 1995, 12(3): 43-47. [10] Yang J, Wang Y, Liu G, et al. Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd2+, Zn2+, Cu2+, and NaCl in transgenic yeast[J]. Molecular Biology Reports, 2011, 38(3): 1567-1574. [11] Gao C, Jiang B, Wang Y, et al. Overexpression of a heat shock protein(ThHSP18.3)from Tamarix hispida confers stress tolerance to yeast[J]. Molecular Biology Reports, 2012, 39(4): 4889-4897. [12] Wang B, Wang Y, Zhang D, et al. Verification of the resistance of a LEA gene from Tamarix expression in Saccharomyces cerevisiae to abiotic stresses[J]. Journal of Forestry Research, 2008, 19(1): 58-62. [13] Gao C, Wang Y, Jiang B, et al. A novel vacuolar membrane H+-ATPase c subunit gene(ThVHAc1)from Tamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae[J]. Molecular Biology Reports, 2011, 38(2): 957-963. [14] 张凯敏, 王玉成, 杨桂燕, 等. 柽柳ThPR1基因的克隆与表达分析[J]. 南京林业大学学报:自然科学版, 2013, 37(2): 45-49. Zhang K M, Wang Y C, Yang G Y, et al.Clone and expression analysis of ThPR1 gene in Tamarix hispida[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2013, 37(2):45-49. [15] 闫绍鹏, 杨瑞华, 王秋玉. 低温胁迫对欧美杂种山杨无性系的生理影响[J]. 南京林业大学学报:自然科学版, 2013, 37(6): 161-164. Yan S P, Yang R H, Wang Q Y.Physiological influence of low temperature stress on hybrid clones of Populus tremula×P. tremuloides[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2013, 37(6): 161-164. [16] Ptushkina M, Malys N, McCarthy J E. eIF4e isoform 2 in Schizosaccharomyces pombe is a novel stress-response factor[J]. EMBO Reports, 2004, 5(3): 311-316. [17] Rausell A, Kanhonou R, Yenush L, et al. The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants[J]. The Plant Journal, 2003, 34(3): 257-267. [18] Latha R, Salekdeh G H, Bennett J, et al. Molecular analysis of a stress-induced cDNA encoding the translation initiation factor, eIF1, from the salt-tolerant wild relative of rice, Porteresia coarctata[J]. Functional Plant Biology, 2004, 31(10): 1035-1042. |