[1] 刘勇, 李国雷, 祝燕. 美国林木种苗培育技术现状及启示[J]. 世界林业研究, 2013, 26(4):75-80. DOI:10.13348/ j.cnki.sjlyyj.2013.04.004.
LIU Y, LI G L, ZHU Y. Nursery techniques in the USA and their inspirations[J]. World Forestry Research, 2013, 26(4): 75-80.
[2] 蒋乐, 李国雷, 刘勇, 等. 短日照处理在夏季造林中的应用及研究进展[J]. 世界林业研究, 2013, 26(5): 36-40. DOI:10.13348/j.cnki.sjlyyj.2013.05.013.
JIANG L, LI G L, LIU Y, et al. Research progress of application of short-day treatment to summer planting[J]. World Forestry Research, 2013, 26(5): 36-40.
[3] LUORANEN J, RIKALA R. Post-planting effects of early-season short-day treatment and summer planting on Norway spruce seedlings[J]. Silva Fennica, 2015, 49(1): 1-9. DOI: 10.14214/sf.1300.
[4] TAN W X, BLANTON S, BIELECH J P. Summer planting performance of white spruce 1+0 container seedlings affected by nursery short-day treatment[J]. New Forests, 2008, 35(2): 187-205. DOI:10.1007/ s11056-007-9071-6.
[5] OLSEN J E. Light and temperature sensing and signaling in induction of bud dormancy in woody plants[J]. Plant Molecular Biology, 2010, 73(1): 37-47. DOI:10.1007/ s11103-010-9620-9.
[6] FLØISTAD I S, GRANHUS A. Bud break and spring frost hardiness in Picea abies seedlings in response to photoperiod and temperature treatments[J]. Canadian Journal of Forestry Research, 2010, 40(5): 968-976. DOI: 10.1139/X10-050.
[7] GONZÁLEZ L M G, El KAYAL W, MORRIS J S, et al. Diverse chitinases are invoked during the activity-dormancy transition in spruce[J]. Tree Genetics & Genomes, 2015, 11(3): 1-21. DOI: 10.1007/ s11295-015-0871-0.
[8] FENNELL A Y, SCHLAUCH A, GOUTHU S, et al. Short day transcriptomic programming during induction of dormancy in grapevine[J]. Frontiers in Plant Science, 2015, 6: 1-17. DOI: 10.3389/10.3389/ fpls. 2015.00834.
[9] LUORANEN J, HELENIUS P, HUTTUNEN L, et al. Short-day treatment enhances root egress of summer-planted Picea abies seedlings under dry conditions[J]. Scandinavian Journal of Forest Research, 2007, 22(5): 384-389. DOI:10.1080/02827580701551382.
[10] KOSTOPOULOU P, RADOGLOU K, et al. Performance and quality of Cupressus sempervirens L. mini-plug seedlings under reduced photoperiod[J]. European Journal of Forest Research, 2011, 130(4): 579-588. DOI: 10.1007/s10342-010-0447-3.
[11] RODZIEWICZ P, SWARCEWICZ B, CHMIELEWSKA K, et al. Influence of abiotic stresses on plant proteome and metabolome changes[J]. Acta Physiologiae Plantarum, 2014, 36(1): 1-19. DOI: 10.1007/s11738-013-1402-y.
[12] ANGURAJ V A K. Gel-based proteomics in plants: time to move on from the tradition[J]. Frontiers in Plant Science, 2015, 6: 369. DOI: 10.3389/fpls.2015.00369.
[13] CARPENTIER S C, WITTERS E, LAUKENS K, et al. Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis[J]. Proteomics, 2005, 5(10): 2497-2507. DOI:10.1002/pmic.200401222.
[14] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1): 248-254. DOI:10. 1016/0003-2697(76)90527-3.
[15] CANDIANO G, BRUSCHI M, MUSANTE L, et al. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis[J]. Electrophoresis, 2004, 25(9): 1327-1333. DOI: 10.1002/elps. 200305844.
[16] 毕影东. 樟子松顶芽休眠与萌发转换的蛋白质组学研究[D]. 哈尔滨:东北林业大学, 2010.
BI Y D. Proteomics analysis of apical bud during the dormancy-to-growth transitions in Pinus sylvestris L. var. mongolica Litv.[D]. Harbin: Northeast Forestry University, 2010.
[17] TRIPKOVIC T, CHARVY C, ALVES S, et al. Identification of protein binders in artworks by MALDI-TOF/TOF tandem mass spectrometry[J]. Talanta, 2013, 113(15): 49-61. DOI:10.1016/j. Talanta. 2013.03.071.
[18] 陈霞, 陈辉, 高锦明. 秦岭油松针叶挥发性物质的成分分析[J]. 西北植物学报, 2005, 25(6): 1230-1233.
CHEN X, CHEN H, GAO J M. Constituents of the volatile materials from the needles of Pinus tabulaeformis in the Qinling ranges[J]. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(6): 1230-1233.
[19] WU X L, GONG F P, WANG W. Protein extraction from plant tissues for 2-DE and its application in proteomic analysis[J]. Proteomics, 2014, 14(6): 645-658. DOI: 10.1002/pmic.201300239.
[20] YANG Y Q, LI X, YANG S H, et al. Comparative physiological and proteomic analysis reveals the leaf response to cadmium-induced stress in poplar(Populus yunnanensis)[J]. PLoS One, 2015, 10(9): 1-20. DOI:10.1371/journal.pone.0137396.
[21] 陈晶瑜, 郭宝峰, 何付丽, 等. 适合双向电泳的植物全蛋白提取方法比较[J]. 中国农学通报, 2010, 26(23): 97-100.
CHEN J Y, GUO B F, HE F L, et al. The comparison of protein extraction methods of plant for two-dimensional electrophoresis[J]. Chinese Agricultural Science Bulletin, 2010, 26(23): 97-100.
[22] 徐超, 吴小芹, 林司曦, 等. 马尾松根部蛋白双向电泳分离体系的构建[J]. 南京林业大学学报(自然科学版), 2011, 35(1): 15-18. DOI:10.3969/j.issn.1000-2006.2011.01.00.
XU C, WU X Q, LIN S X, et al. Establishment of two-dimensional gel electrophoresis system for analyzing the root protein of Pinus massoniana[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2011, 35(1): 15-18.
[23] ZHANG M H, LI G W, HUANG W, et al. Proteomic study of Carissa spinarum in response to combined heat and drought stress[J]. Proteomics, 2010, 10(17): 3117-3129. DOI: 10.1002/ pmic. 200900637.
[24] WANG L, LIANG W, XING J, et al. Dynamics of chloroplast proteome in salt-stressed mangrove Kandelia candel (L.)Druce.[J]. Journal of Proteome Research, 2013, 12(11): 5124-5136. DOI: 10.1021/ pr4006469.
[25] 曾光辉. 杨梅光抑制的研究[D]. 杭州: 浙江大学, 2004.
ZENG G H. The study on the photoinhibition of photosynthesis in Myrica rubra Sieb.et Zucc.[D]. Hangzhou: Zhejiang University, 2004.
[26] MARGARIA P, ABBÀ S, PALMANO S. Novel aspects of grapevine response to phytoplasma infection investigated by a proteomic and phospho-proteomic approach with data integration into functional networks[J]. BMC Genomics, 2013, 14(1): 1-15. DOI:10.1186/1471-2164-14-38.
[27] WESTON D J, BAUERLE W L, SWIRE-Clark G A, et al. Characterization of rubisco activase from thermally contrasting genotypes of Acer rubrum (Aceraceae)[J]. American Journal of Botany, 2007, 94(6): 926-934. DOI: 10.3732/ajb.94.6.926.
[28] 张霞, 王艳, 张富春. 逆境胁迫下甘油醛-3-磷酸脱氢酶功能多元化的研究进展[J]. 植物生理学报, 2013, 49(1): 24-28. DOI: 10.13592/j.cnki.ppj.2013.01.002.
ZHANG X, WANG Y, ZHANG F C. Advances in the research of the diversified functions of glyceraldehyde-3-phosphate dehydrogenase under unfavorable conditions[J]. Plant Physiology Journal, 2013, 49(1): 24-28.
[29] 龙良启, 孙中武, 宋慧, 等. 生物化学[M]. 北京: 科学出版社, 2005:148-153.
[30] 潘瑞炽.植物生理学[M]. 5版. 北京: 高等教育出版社,2004: 105-108, 247-249.
PAN R Z. Plant physiology[M]. 5 Edition. Beijing: Higher Education Press, 2004: 105-108, 247-249.
[31] LEE Y K, ALEXANDER D, WULFF J, et al. Changes in metabolite profiles in Norway spruce shoot tips during short-day induced winter bud development and long-day induced bud flush[J]. Metabolomics, 2014, 10(5): 842-858. DOI: 10.1007/s11306-014-0646-x.
[32] 陈建中, 章镇, 戴剑. 植物蛋白质合成延伸因子[J]. 植物生理学通讯, 2002, 38(4): 406-411. DOI:10.13592/j.cnki.ppj.2002.04.035.
CHEN J Z, ZHANG Z, DAI J. Elongation factors in plant protein synthesis[J]. Plant Physiology Communications, 2002, 38(4): 406-411.
[33] 何彩云. 四种针叶树与欧美107杨响应干旱与高温胁迫的蛋白质组研究[D]. 北京:中国林业科学研究院, 2007.
HE C Y. Proteomic analysis of four coniferous tree species and Populus×euramericana cv.‘74/76'under drought and high-temperature stress[D]. Beijing: Chinese Academy of Forestry, 2007.
[34] DURAND T C, SERGEANT K, CARPIN S, et al. Screening for changes in leaf and cambial proteome of Populus tremula× P. alba under different heat constraints[J]. Journal of Plant Physiology, 2012, 169(17): 1698-1718. DOI: 10.1016/j. jplph. 2012. 06.016.
[35] 王盾. Rubisco活化酶大小同工型与水稻光合作用的关系研究[D]. 杭州:浙江大学, 2009.
WANG D. The relationship between rubisco activase isoforms and photosynthesis in rice[D]. Hangzhou: Zhejiang University, 2009.
[36] 梁颖, 李玉花. 植物中磷酸甘油醛-3-磷酸脱氢酶(GAPDH)在氧化胁迫下的生理功能[J]. 植物生理学通讯, 2009, 45(10): 1027-1032. DOI: 10.13592/j.cnki. ppj.2009.10.001.
LIANG Y, LI Y H. Physiological functions of glyceraldehyde-3-phosphate dehydrogena-se in plants under oxidative stress condition[J]. Plant Physiology Communications, 2009, 45(10): 1027-1032. |