南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (4): 167-175.doi: 10.3969/j.issn.1000-2006.202001021
许梦璐1(), 吴炜1, 颜铮明1, 曹国华2, 沈彩芹2, 阮宏华1()
收稿日期:
2020-01-08
修回日期:
2020-03-16
出版日期:
2020-07-22
发布日期:
2020-08-13
通讯作者:
阮宏华
作者简介:
许梦璐(基金资助:
XU Menglu1(), WU Wei1, YAN Zhengming1, CAO Guohua2, SHEN Caiqin2, RUAN Honghua1()
Received:
2020-01-08
Revised:
2020-03-16
Online:
2020-07-22
Published:
2020-08-13
Contact:
RUAN Honghua
摘要: 近年来,滨海滩涂已成为人类围垦开发的主要区域。围垦,一方面改变了土壤基本的理化性质,另一方面也加速了土壤有机碳库的变化,特别是对围垦活动比较敏感的活性有机碳,因此研究围垦区不同土地利用类型下土壤有机碳及其活性组分的含量与差异,能够为合理开发利用滨海湿地,了解围垦区的土壤碳循环特征提供参考。 选择江苏东台沿海滩涂围垦区林地、旱地及水田土壤作为研究对象,并以光滩土壤作为对照,分层采集不同剖面的土壤样品,分析不同土地利用类型下可溶性有机碳(dissolved organic carbon, DOC)、微生物生物量碳(microbial biomass carbon, MBC)和易氧化碳(easily oxidized carbon, EOC)含量的变化特征及与土壤基本理化指标间的相关性。 ①随着土层深度的增加,各土地利用类型土壤DOC含量呈先增(0~40 cm)后减(≥40 ~100 cm)的趋势;土壤MBC和EOC含量均随土层深度呈现显著阶梯式下降。不同土地利用类型同一土层,除了DOC含量表现为光滩显著大于林地、旱地和水田外, MBC和EOC 的含量由大到小顺序依次为林地、水田、旱地、光滩。②随土层深度的增加,DOC和MBC分配比例的变化趋势一致,即光滩中无明显变化规律,林地、旱地和水田均先增后减,EOC分配比例随着土层深度的增加则没有表现出一致的变化趋势。0~40 cm土层,林地、旱地和水田的有机碳活性组分分配比例均显著低于光滩,40cm以下,各分配比例没有呈现一致的规律。③土壤MBC和EOC含量之间存在极显著相关关系,且二者均与土壤总有机碳(soil organic carbon, SOC)、总氮(total nitrogen, TN)含量呈极显著正相关,与pH呈极显著负相关,但与电导率(electric conductivity, EC)和总磷(total phosphorus, TP)含量之间不存在相关关系。而土壤DOC含量则与各指标间均不存在相关性。 人为的农业耕种措施显著增加了土壤有机碳及其活性组分的含量,提高了土壤有机碳的稳定性,其中,林地和水田土壤活性有机碳含量较多,尤其林地更有利于土壤有机碳的积累,可能发挥更大的碳汇功能。水田降低pH效果最佳,故在围垦初期,人类耕作活动以水田为主可快速脱盐脱钙,进而有利于有机碳的积累。滨海滩涂的开发利用可能显著改变原有湿地碳循环的路径与模式,故应该充分考虑滩涂围垦对土壤碳循环的影响。
中图分类号:
许梦璐,吴炜,颜铮明,等. 滨海滩涂不同土地利用类型土壤活性有机碳含量与垂直分布[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 167-175.
XU Menglu, WU Wei, YAN Zhengming, CAO Guohua, SHEN Caiqin, RUAN Honghua. Content and vertical distribution of soil labile organic carbons in different land use types in the tidal flat area[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(4): 167-175.DOI: 10.3969/j.issn.1000-2006.202001021.
表2
样地土壤基本理化性质"
土地利用类型 land use type | 土层深度/cm soil depth | pH | 电导率/(dS·m-1) EC | 有机碳含量/(g·kg-1) SOC content | 全氮含量/(g·kg-1) TN content | 全磷含量/(g·kg-1) TP content |
---|---|---|---|---|---|---|
光滩 bared land | 0~20 | 8.65±0.03 Ba | 3.50±0.88 Aa | 0.94±0.11 Da | 0.27±0.05 Ba | 0.96±0.01 ABa |
≥20~40 | 8.61±0.03 Cab | 3.07±0.50 Aa | 0.94±0.04 Da | 0.31±0.12 Aa | 0.87±0.01 ABab | |
≥40~60 | 8.57±0.04 Cab | 3.12±0.69 Aa | 0.88±0.04 Ba | 0.26±0.02 Aa | 0.87±0.02 ABab | |
≥60~80 | 8.58±0.01 Cb | 2.94±0.43 Aa | 0.87±0.03 Aa | 0.30±0.02 Ba | 0.84±0.01 Ab | |
≥80~100 | 8.57±0.06 Cb | 2.88±0.43 Aa | 0.93±0.03 Aa | 0.31±0.04 ABa | 0.90±0.02 Bab | |
林地 forest land | 0~20 | 8.77±0.06 ABb | 0.12±0.02 Ba | 5.80±0.20 Aa | 0.62±0.08 Aa | 0.51±0.03 Cb |
≥20~40 | 8.90±0.13 Bab | 0.10±0.02 Ba | 3.15±0.09 Ab | 0.37±0.06 Ab | 0.63±0.04 Cab | |
≥40~60 | 9.02±0.10 Ba | 0.10±0.03 Ba | 0.81±0.07 Bc | 0.37±0.07 Ab | 0.75±0.01 Bab | |
≥60~80 | 9.08±0.16 Ba | 0.11±0.02 Ba | 0.83±0.03 Ac | 0.35±0.04 Bb | 0.84±0.08 Aa | |
≥80~100 | 9.11±0.17 Ba | 0.11±0.01 Ba | 0.87±0.03 Ac | 0.36±0.02 BCb | 0.60±0.07 Aab | |
旱地 upland | 0~20 | 8.90±0.19 Ac | 0.30±0.17 Ba | 3.91±0.13 Ba | 0.71±0.18 Aa | 0.90±0.04 Ba |
≥20~40 | 9.20±0.18 Ab | 0.22±0.06 Ba | 1.22±0.10 Cb | 0.34±0.08 Ab | 0.75±0.01 Ba | |
≥40~60 | 9.40±0.08 Aab | 0.24±0.07 Ba | 0.93±0.05 Bc | 0.35±0.07 Ab | 0.84±0.05 ABa | |
≥60~80 | 9.46±0.12 Aab | 0.28±0.16 Ba | 1.02±0.13 Ab | 0.32±0.06 Ab | 0.81±0.04 Aa | |
≥80~100 | 9.57±0.09 Aa | 0.27±0.13 Ba | 0.78±0.04 Ac | 0.38±0.03 Cb | 0.78±0.02 ABa | |
水田 paddy field | 0~20 | 8.09±0.08 Cd | 0.51±0.06 Ba | 4.38±0.14 Ba | 0.76±0.04 Aa | 1.05±0.01 Aa |
≥20~40 | 8.33±0.05 Dc | 0.32±0.08 Bab | 1.92±0.13 Bb | 0.32±0.03 Ab | 0.93±0.01 Aa | |
≥40~60 | 8.41±0.05 Dbc | 0.31±0.09 Bab | 1.12±0.09 Acd | 0.36±0.06 Ab | 0.93±0.01 Aa | |
≥60~80 | 8.50±0.12 Cab | 0.33±0.11 Bab | 1.24±0.02 Ac | 0.37±0.07 Ab | 1.02±0.02 Aa | |
≥80~100 | 8.65±0.09 Ca | 0.25±0.14 Bb | 1.03±0.13 Ad | 0.33±0.08 Ab | 1.02±0.04 Aa |
1 | WEIL R R, ISLAM K R, STINE M A, et al. Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use[J]. Ameri J Alter Agri, 2003, 18(1): 3-17. DOI:10.1079/AJAA200228. |
2 | GU L H,POST W M,KING A W.Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature:a model analysis[J].Global Biogeochem Cycles,2004,18(1):GB1022.DOI:10.1029/2003gb002119. |
3 | 沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18(3):32-38. |
SHEN H,CAO Z H,HU Z Y.Characteristics and ecological effects of the active organic carbon in soil[J].Chin J Ecol,1999,18(3):32-38.DOI:10.13292/j.1000-4890.1999.0038. | |
4 | SEARCHINGER T,HEIMLICH R,HOUGHTON R A,et al.Use of US croplands for biofuels increases greenhouse gases through emissions from land⁃use change[J].Science,2008,319(5867):1238-1240.DOI:10.1126/science.1151861. |
5 | ZOU X M,RUAN H H,FU Y,et al.Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation⁃incubation procedure[J].Soil Biol Biochem,2005,37(10):1923-1928.DOI:10.1016/j.soilbio.2005.02.028. |
6 | 赵鑫,宇万太,李建东,等.不同经营管理条件下土壤有机碳及其组分研究进展[J].应用生态学报,2006,17(11):2203-2209. |
ZHAO X,YU W T,LI J D,et al.Research advances in soil organic carbon and its fractions under different management patterns[J].Chin J Appl Ecol,2006,17(11):2203-2209.DOI:10.13287/j.1001-9332.2006.0433. | |
7 | SUN B H,HALLETT P D,CAUL S,et al.Distribution of soil carbon and microbial biomass in arable soils under different tillage regimes[J].Plant Soil,2011,338(1/2):17-25.DOI:10.1007/s11104-010-0459-2. |
8 | 侯化亭,张丛志,张佳宝,等.不同施肥水平及玉米种植对土壤微生物生物量碳氮的影响[J].土壤,2012,44(1):163-166. |
HOU H T,ZHANG C Z,ZHANG J B,et al.Effects of fertilization and maize growing on soil microbial biomass carbon and nitrogen[J].Soils,2012,44(1):163-166.DOI:10.13758/j.cnki.tr.2012.01.021. | |
9 | 蔡晓布,彭岳林,于宝政,等.不同状态高寒草原主要土壤活性有机碳组分的变化[J].土壤学报,2013,50(2):315-323. |
CAI X B,PENG Y L,YU B Z,et al.Changes in major fractions of active soil organic carbon in alpine steppes different in states[J].Acta Pedol Sin,2013,50(2):315-323. | |
10 | 张欢.华东沿海滩涂围垦区土壤有机碳动态及其模型预测[D].南京:南京大学,2017.ZHANG H. Dynamics and predication of soil organic carbon in coastal reclaimed lands,eastern China [D].Nanjing:Nanjing University,2017. |
11 | 曹磊,宋金明,李学刚,等.中国滨海盐沼湿地碳收支与碳循环过程研究进展[J].生态学报,2013,33(17) :5141-5152. |
CAO L,SONG J M,LI X G,et al. Research progresses in carbon budget and carbon cycle of the coastal salt marshes in China[J].Acta Ecol Sin,2013,33(17) :5141-5152.DOI:10.5846/stxb201206030803. | |
12 | 普慧梅,王艮梅.不同经营模式下杨树人工林土壤溶解性有机碳的吸附行为[J].南京林业大学学报(自然科学版),2019,43(2):55-63. |
PU H M,WANG G M.Mechanism of dissolved organic carbon adsorption in soils underdifferent poplar plantation management patterns[J].J Nanjing For Univ (Nat Sci Ed ),2019,43(2):55-63.DOI:10.3969/j.issn.1000-2006.201803028. | |
13 | 王莹,阮宏华,黄亮亮,等.围湖造田不同土地利用方式土壤活性有机碳的变化[J].生态学杂志,2010,29(4):741-748. |
WANG Y,RUAN H H,HUANG L L,et al.Soil labile organic carbon of different land use types in a reclaimed land area of Taihu Lake[J].Chin J Ecol,2010,29(4):741-748.DOI:10.13292/j.1000-4890.2010.0112. | |
14 | 田耀武,刘谊锋,王聪,等.伏牛山森林土壤有机碳密度与环境因子的关联性分析[J].南京林业大学学报(自然科学版),2019,43(1):83-90. |
TIAN Y W,LIU Y F,WANG C,et al.Correlation between forest soil organic carbon density and environmental factors in Funiu Mountain, Henan Province[J].J Nanjing For Univ (Nat Sci Ed ),2019,43(1):83-90.DOI:10.3969/j.issn.1000-2006.201709057. | |
15 | HUO L L,CHEN Z K,ZOU Y C,et al.Effect of Zoige alpine wetland degradation on the density and fractions of soil organic carbon[J].Ecol Eng,2013,51:287-295.DOI:10.1016/j.ecoleng.2012.12.020. |
16 | 曾从盛,钟春棋,仝川,等.土地利用变化对闽江河口湿地表层土壤有机碳含量及其活性的影响[J].水土保持学报,2008,22(5):125-129. |
ZENG C S,ZHONG C Q,TONG C,et al.Impacts of LUCC on soil organic carbon contents in wetland of Minjiang River estuary[J].J Soil Water Conserv,2008,22(5):125-129.DOI:10.13870/j.cnki.stbcxb.2008.05.030. | |
17 | JONES D,WILLETT V.Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and Dissolved organic carbon (DOC) in soil[J].Soil Biol Biochem,2006,38(5):991-999.DOI:10.1016/j.soilbio.2005.08.012. |
18 | FREY S D,KNORR M,PARRENT J L,et al.Chronic nitrogen enrichment affects the structure and function of the soil micro⁃bial community in temperate hardwood and pine forests[J].For Ecol Manag,2004,196(1):159-171.DOI:10.1016/j.foreco.2004.03.018. |
19 | BLAIR G J,LEFROY R,LISLE L.Soil carbon fractions based on their degree of oxidation,and the development of a carbon management index for agricultural systems[J].Aust J Agric Res,1995,46(7):1459.DOI:10.1071/ar9951459. |
20 | SIX J, CONANT R T, PAUL E A, et al. Stabilization mechanisms of soil organic matter: implications for C⁃saturation of soils[J]. Plant Soil, 2002, 241(2): 155-176. DOI:10.1023/A:1016125726789. |
21 | 吴江琪,马维伟,李广,等.尕海湿地沼泽化草甸中不同积水区土壤活性有机碳含量[J].湿地科学,2017,15(1):137-143. |
WU J Q,MA W W,LI G,et al.Contents of active organic carbon in soils of different flooding areas in marshy meadow in Gahai wetlands[J].Wetl Sci,2017,15(1):137-143.DOI:10.13248/j.cnki.wetlandsci.2017.01.020. | |
22 | MAIE N,WATANABE A,KIMURA M.Chemical characteristics and potential source of fulvic acids leached from the plow layer of paddy soil[J].Geoderma,2004,120(3/4):309-323.DOI:10.1016/j.geoderma.2004.02.007. |
23 | 张文敏,吴明,邵学新,等.杭州湾南岸不同围垦年限农田土壤有机碳及其活性组分变化[J].水土保持学报,2014,28(2):226-231. |
ZHANG W M,WU M,SHAO X X,et al.Changes in soil organic carbon and its active fractions during different reclamation period on the south coast of Hangzhou Bay[J].J Soil Water Conserv,2014,28(2):226-231.DOI:10.13870/j.cnki.stbcxb.2014.02.043. | |
24 | 万忠梅,郭岳,郭跃东.土地利用对湿地土壤活性有机碳的影响研究进展[J].生态环境学报,2011,20(3):567-570. |
WAN Z M,GUO Y,GUO Y D.Research progress on influence of land use on wetland soil active organic carbon[J].Ecol Environ Sci,2011,20(3):567-570.DOI:10.16258/j.cnki.1674-5906.2011.03.020. | |
25 | 马士德,谢肖勃,朱素兰.辽东湾海域海水DOC,POC及间隙水中的DOC分布特征[J].海洋科学,1995,19(6):46-50. |
MA S D,XIE X B,ZHU S L.The distributive characteristics of poc in seawater and doc in seawater and interstitial water of Liaodong bay[J].Mar Sci,1995,19(6):46-50.DOI: 10.1007/BF02006258. | |
26 | 龚月月,朱新萍,李典鹏,等.不同土地利用方式下干旱区湿地土壤活性有机碳组分特征[J].草业科学,2019,36(8):1944-1952. |
GONG Y Y,ZHU X P,LI D P,et al.Effect of land use type on the active organic carbon of wetland soil in an arid area[J].Pratacultural Sci,2019,36(8):1944-1952.DOI:10.11829/j.issn.1001-0629.2019-0595. | |
27 | 崔东,闫俊杰,刘海军,等.伊犁河谷不同类型湿地土壤活性有机碳组分及其含量差异[J].生态学杂志, 2019,38(7):2087-2093. DOI:10.13292/j.1000-4890.201907.006.CUI D, |
YAN J J, LIU H J, et al. Soil labile organic carbon fractions and the differences of their concentrations in different types of wetlands in Yili valley[J]. Chin J of Ecol,2019, 38(7): 2087-2093. | |
28 | 张仕吉,项文化,孙伟军,等.湘中丘陵区不同土地利用方式对土壤有机碳和微生物量碳的影响[J].水土保持学报,2013,27(2):222-227. |
ZHANG S J,XIANG W H,SUN W J,et al.Effects of different land use types on soil organic carbon and microbial biomass carbon in the hilly area,central Hunan Province[J].J Soil Water Conserv,2013,27(2):222-227.DOI:10.13870/j.cnki.stbcxb.2013.02.035. | |
29 | 李太魁,朱波,王小国,等.土地利用方式对土壤活性有机碳含量影响的初步研究[J].土壤通报,2013,44(1):46-51. |
LI T K,ZHU B,WANG X G,et al.Effects of land use on the contents of soil active organic carbon[J].Chin J Soil Sci,2013,44(1):46-51.DOI:10.19336/j.cnki.trtb.2013.01.007. | |
30 | 张成娥,梁银丽,贺秀斌.地膜覆盖玉米对土壤微生物量的影响[J].生态学报,2002,22(4):508-512. |
ZHANG C E, LIANG Y L, HE X B. Effects of plastic cover cultivation on soil microbial biomass[J]. Acta Ecol Sin, 2002, 22(4): 508-512.DOI:10.3321/j.issn:1000-0933.2002.04.009. | |
张成娥,梁银丽,贺秀斌.地膜覆盖玉米对土壤微生物量的影响[J].生态学报,2002,22(4):508-512. | |
ZHANG C E,LIANG Y L,HE X B.Effects of plastic cover cultivation on soil microbial biomass[J].Acta Ecol Sin,2002,22(4):508-512. | |
31 | THORBURN P J,MEIER E A,COLLINS K,et al.Changes in soil carbon sequestration,fractionation and soil fertility in response to sugarcane residue retention are site-specific[J].Soil Tillage Res,2012,120:99-111.DOI:10.1016/j.still. 2011.11.009. |
32 | 王国兵,赵小龙,王明慧,等.苏北沿海土地利用变化对土壤易氧化碳含量的影响[J].应用生态学报,2013,24(4):921-926. |
WANG G B,ZHAO X L,WANG M H,et al. Effects of land use change on soil readily oxidizable carbon in a coastal area of northern Jiangsu Province,East China[J].Chin J Appl Ecol,2013,24(4):921-926.DOI:10.13287/j.1001-9332. 2013.0246. | |
33 | 肖烨,黄志刚,武海涛,等.三江平原不同湿地类型土壤活性有机碳组分及含量差异[J].生态学报,2015,35(23):7625-7633. |
XIAO Y,HUANG Z G,WU H T,et al.Compositions and contents of active organic carbon in different wetland soils in Sanjiang Plain,Northeast China[J].Acta Ecol Sin,2015,35(23):7625-7633. | |
34 | 周晨霓,马和平.西藏色季拉山典型植被类型土壤活性有机碳分布特征[J].土壤学报,2013,50(6):1246-1251. |
ZHOU C N,MA H P.Distribution of labile organic carbon in soil as affected by vegetation typical of sygera mountains,Tibet,China[J].Acta Pedol Sin,2013,50(6):1246-1251. | |
35 | JANDL R,SOLLINS P.Water⁃extractable soil carbon in relation to the belowground carbon cycle[J].Biol Fertil Soils,1997,25(2):196-201.DOI:10.1007/s003740050303. |
36 | XU X,ZHOU Y,RUAN H H,et al.Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains,China[J].Soil Biol Biochem,2010,42(10):1811-1815.DOI:10.1016/j.soilbio.2010.06.021. |
37 | 张仕吉,项文化,孙伟军,等.湘中丘陵区不同土地利用方式土壤水溶性有机碳含量[J].生态学杂志,2014,33(8):2065-2071. |
ZHANG S J,XIANG W H,SUN W J,et al.Soil Dissolved organic carbon concentration under different land⁃use patterns in a hilly area of central Hunan Province,China[J].Chin J Ecol,2014,33(8):2065-2071.DOI:10.13292/j.1000-4890.2014.0187. | |
38 | 张金波,宋长春.土地利用方式对土壤碳库影响的敏感性评价指标[J].生态环境,2003,12(4):500-504. |
ZHANG J B,SONG C C.The sensitive evaluation indicators of effects of land⁃use change on soil carbon pool[J].Ecol Environmnet,2003,12(4):500-504.DOI:10.16258/j.cnki.1674-5906.2003.04.031. | |
39 | 唐国勇,黄道友,童成立,等.红壤丘陵景观单元土壤有机碳和微生物生物量碳含量特征[J].应用生态学报,2006,17(3):429-433. |
TANG G Y,HUANG D Y,TONG C L,et al.Characteristics of soil organic carbon and microbial biomass carbon in hilly red soil region[J].Chin J Appl Ecol,2006,17(3):3429-3433.DOI:10.13287/j.1001-9332.2006.0088. | |
40 | 王晓君,王宪帅,黄从德,等.岷江上游森林/干旱河谷交错带不同土地利用类型土壤有机碳和活性有机碳特征[J].水土保持学报,2011,25(2):167-172. |
WANG X J,WANG X S,HUANG C D,et al.Characteristics of soil organic carbon and labile organic carbon under different land use types at forest⁃drought valley ecotone in the upper reaches of Minjiang River[J].J Soil Water Conserv,2011,25(2):167-172.DOI:10.13870/j.cnki.stbcxb.2011.02.038. | |
41 | WANG Y,RUAN H H,HUANG L L,et al.Soil labile organic carbon with different land uses in reclaimed land area from Taihu Lake[J].Soil Sci,2010,175(12):624-630.DOI:10.1097/ss.0b013e3181fe2ee4. |
42 | 刘学东.荒漠草原不同群落类型土壤活性有机碳组分特征研究[D].银川:宁夏大学,2017. |
LIU X D.Characteristics of soil labile organic carbon fractions in different communities of desert steppe[D].Yinchuan:Ningxia University,2017. | |
43 | 周学峰.围垦后不同土地利用方式对长江口滩地土壤有机碳的影响[D].上海:华东师范大学,2010. |
ZHOU X F.Effects of land⁃use changes on soil organic carbon of reclaimed alluvial soils in the Yangtze Estuary[D].Shanghai:East China Normal University,2010. | |
44 | 张徐,张明,吴鹏豹,等.典型滩涂围垦区土壤化学性质的短期变化特征[J].土壤通报,2016,47(2):346-352. |
ZHANG X,ZHANG M,WU P B,et al.Short⁃term variation of soil chemical properties after tidal flat reclamation in a typical coastal area[J].Chin J Soil Sci,2016,47(2):346-352.DOI:10.19336/j.cnki.trtb.2016.02.14. | |
45 | LUTZE J L,GIFFORD R M.Nitrogen accumulation and distribution in Danthoniarichardsonii swards in response to CO2 and nitrogen supply over four years of growth[J].Glob Chang Biol,2000,6(1):1-12.DOI:10.1046/j.1365-2486.2000.00276.x. |
46 | SOUSSANA J F,LEMAIRE G.Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop⁃livestock systems[J].Agric Ecosyst Environ,2014,190:9-17.DOI:10.1016/j.agee.2013.10.012. |
47 | 满洲,胡婵娟,冯德显,等.黄土丘陵区白杨纯林群落结构调整对土壤碳的影响[J].生态学杂志,2018,37(12):3533-3540. |
MAN Z,HU C J,FENG D X,et al.Effect of community structure adjustment of pure Populustomentosa planataion on soil carbon in the semi⁃arid Loess Plateau of China[J].Chin J Ecol,2018,37(12):3533-3540.DOI:10.13292/j.1000-4890.201812.017. |
[1] | 赵爽, 王邵军, 杨波, 左倩倩, 曹乾斌, 王平, 张路路, 张昆凤, 樊宇翔. 西双版纳热带森林碳循环中土壤呼吸对次生演替的响应[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 12-18. |
[2] | 王邵军, 左倩倩, 曹乾斌, 王平, 杨波, 赵爽, 陈闽昆. 云南寻甸石漠化土壤易氧化碳对丛枝菌根真菌共生的响应[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 7-14. |
[3] | 郭传阳, 林开敏, 郑鸣鸣, 任正标, 李茂, 郑宏, 游云飞, 陈志云. 间伐对杉木人工林土壤微生物生物量碳氮的短期影响[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 125-131. |
[4] | 范洪旺, BUI Van Thang, 陶晓, 管致玮, 许克福. 城乡空间差异对麻栎林土壤活性有机碳的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 151-158. |
[5] | 卢明星, 徐传红, 朱咏莉, 李萍萍. Cd诱导土壤ALP的Hormesis效应:土地利用变化的驱动机制[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 173-180. |
[6] | 刘澜,唐晓岚,熊星,杜娟,王军围. 基于GIS的苏南乡村自然景观的生态敏感性分析[J]. 南京林业大学学报(自然科学版), 2018, 42(04): 159-164. |
[7] | 杨宝玲,张文文,范换,王邵军,阮宏华,沈彩芹,曹国华. 苏北沿海地区不同土地利用类型下土壤动物群落结构特征[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 120-126. |
[8] | 宋蕾,林尤伟,金光泽. 模拟氮沉降对典型阔叶红松林土壤微生物群落特征的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(05): 7-12. |
[9] | 徐艺倩,薛建辉,吴永波,卜晓莉. 施用稻壳炭对黄棕壤氮磷淋失及微生物生物量碳氮含量的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(03): 22-28. |
[10] | 张文文,肖晗冉,杨宝玲,董可嘉,阮宏华,郑阿宝,沈彩芹,曹国华. 不同土地利用类型土壤动物对土壤氮矿化季节变化的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(06): 20-26. |
[11] | 何冬梅,王磊,冯育青,阮宏华. 不同土地利用类型对土壤可溶性有机碳的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(06): 15-19. |
[12] | 王岽,徐京京,周亮广,吴见. 安徽省生态系统服务价值变化及其趋势预测[J]. 南京林业大学学报(自然科学版), 2015, 39(04): 88-94. |
[13] | 葛之葳,彭塞,许凯,徐钰,于水强,阮宏华,徐长柏,曹国华. 短期氮添加对杨树人工林表层土壤 可溶性有机碳的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(06): 23-27. |
[14] | 范换,王邵军,阮宏华,谭艳,郑阿宝,徐钰,许凯,曹国华. 苏北沿海不同土地类型土壤动物群落及其对凋落物分解的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(03): 1-7. |
[15] | 李平,王国兵,郑阿宝,沈玉娟,赵琦齐,王琳飞,蒋如生,李莉,阮宏华. 苏南丘陵区4种典型人工林土壤活性有机碳分布特征[J]. 南京林业大学学报(自然科学版), 2012, 36(04): 79-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||