[1] |
ZHAO C Z, ZHANG H, SONG C P, et al. Mechanisms of plant responses and adaptation to soil salinity[J]. Innov, 2020, 1(1):100017.DOI: 10.1016/j.xinn.2020.100017.
doi: 10.1016/j.xinn.2020.100017
|
[2] |
赵宣, 韩霁昌, 王欢元, 等. 盐渍土改良技术研究进展[J]. 中国农学通报, 2016, 32(8):113-116.
|
|
ZHAO X, HAN J C, WANG H Y, et al. Research progress of saline soil improvement technology[J]. Chin Agric Sci Bull, 2016, 32(8):113-116.
|
[3] |
阿吉艾克拜尔, 邵孝侯, 常婷婷, 等. 我国盐碱地改良技术和方法综述[J]. 安徽农业科学, 2013, 41(16):7269-7271.
|
|
HAJIAKBAR, SHAO X H, CHANG T T, et al. A review on improvement technology and methods of saline-alkali soil in China[J]. J Anhui Agric Sci, 2013, 41(16):7269-7271. DOI: 10.13989/j.cnki.0517-6611.2013.16.077.
doi: 10.13989/j.cnki.0517-6611.2013.16.077
|
[4] |
杨真, 王宝山. 中国盐渍土资源现状及改良利用对策[J]. 山东农业科学, 2015, 47(4):125-130.
|
|
YANG Z, WANG B S. Present status of saline soil resources and countermeasures for improvement and utilization in China[J]. Shandong Agric Sci, 2015, 47(4):125-130.DOI: 10.14083/j.issn.1001-4942.2015.04.032.
doi: 10.14083/j.issn.1001-4942.2015.04.032
|
[5] |
万欣, 江浩, 王磊, 等. 江苏沿海滩涂土壤改良技术研究进展[J]. 江苏林业科技, 2017, 44(5):43-47.
|
|
WAN X, JIANG H, WANG L, et al. Progress of soil amelioration technology in coastal beach in Jiangsu Province[J]. Jiangsu For Sci Technol, 2017, 44(5):43-47.
|
[6] |
王健, 李傲瑞. 我国盐碱地改良技术综述[J]. 现代农业科技, 2019(21):182-183,185.
|
|
WANG J, LI A R. A summary of improvement techniques of saline-alkali land[J]. Mod Agric Sci Technol, 2019,(21):182-183,185.
|
[7] |
沈徐悦, 金荷仙, 陈蓉蓉, 等. NaCl胁迫对3种木兰科植物幼苗叶片部分生理指标的影响[J]. 植物资源与环境学报, 2020, 29(4):75-77.
|
|
SHEN X Y, JIN H X, CHEN R R, et al. Effect of NaCl stress on some physiological indexes of leaves of seedlings of three species in Magnoliaceae[M]. J Plant Resour Environ, 2020, 29(4):75-77. DOI: 10.3969 /j.issn.1674-7895.2020.04.11.
|
[8] |
史成伟, 郭江艳, 翁行良, 等. 红果冬青种子繁殖与培育技术[J]. 绿色科技, 2019(21):116-118.
|
|
SHI C W, GUO J Y, WENG X L, et al. Seed propagation and cultivation techniques of Ilex Chinensis[J]. J Green Sci Technol, 2019(21):116-118.DOI: 10.16663/j.cnki.lskj.2019.21.046.
doi: 10.16663/j.cnki.lskj.2019.21.046
|
[9] |
徐斌芬, 王国明, 王美琴, 等. 全缘冬青和钝齿冬青的分布与繁殖技术[J]. 中国野生植物资源, 2007, 26(4):63-65.
|
|
XU B F, WANG G M, WANG M Q, et al. Distribution and propagation of Ilex integra Thunb.and Ilex crenata Thunb.[J]. Chin Wild Plant Resour, 2007, 26(4):63-65.DOI: 10.3969/j.issn.1006-9690.2007.04.018.
doi: 10.3969/j.issn.1006-9690.2007.04.018
|
[10] |
YU Y F, ZHANG M, FENG J Y, et al. Physiological analysis reveals relatively higher salt tolerance in roots of Ilex integra than in those of Ilex purpurea[J]. J For Res, 2021, 9: 1-10.DOI: 10.1007/s11676-021-01386-w.
doi: 10.1007/s11676-021-01386-w
|
[11] |
GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-seq data without a reference genome[J]. Nat Biotechnol, 2011, 29(7): 644-652. DOI: 10.1038/nbt.1883.
doi: 10.1038/nbt.1883
|
[12] |
WANG Z R, CUI Y Y, VAINSTEIN A, et al. Regulation of fig (Ficus carica L.) fruit color:metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway[J]. Front Plant Sci, 2017, 8:1990.DOI: 10.3389/fpls.2017.01990.
doi: 10.3389/fpls.2017.01990
|
[13] |
ROY S J, NEGRÃO S, TESTER M. Salt resistant crop plants[J]. Curr Opin Biotechnol, 2014, 26:115-124.DOI: 10.1016/j.copbio.2013.12.004.
doi: 10.1016/j.copbio.2013.12.004
|
[14] |
ANAMIKA K, VERMA S, JERE A, et al. Transcriptomic profiling using next generation sequencing-advances,advantages,and challenges[M]//Next Generation Sequencing-Advances,Applications and Challenges. Rijeka, Croatia:InTech, 2016. DOI: 10.5772/61789.
doi: 10.5772/61789
|
[15] |
YU Z P, DUAN X B, LUO L, et al. How plant hormones mediate salt stress responses[J]. Trends Plant Sci, 2020, 25(11):1117-1130.DOI: 10.1016/j.tplants.2020.06.008.
doi: 10.1016/j.tplants.2020.06.008
|
[16] |
FRANK H A, COGDELL R J. Carotenoids in photosynthesis[J]. Photochem Photobiol, 1996, 63(3):257-264.DOI: 10.1111/j.1751-1097.1996.tb03022.x.
doi: 10.1111/j.1751-1097.1996.tb03022.x.
|
[17] |
HAN R M, ZHANG J P, SKIBSTED L H. Reaction dynamics of flavonoids and carotenoids as antioxidants[J]. Molecules, 2012, 17(2): 2140-2160.DOI: 10.3390/molecules17022140.
doi: 10.3390/molecules17022140
|
[18] |
CAZZONELLI C I. Carotenoids in nature:Insights from plants and beyond[J]. Funct Plant Biol, 2011, 38(11):833-847.DOI: 10.1071/FP11192.
doi: 10.1071/FP11192
|
[19] |
CHEN X Y, HAN H P, JIANG P, et al. Transformation of β-lycopene cyclase genes from Salicornia europaea and Arabidopsis conferred salt tolerance in Arabidopsis and tobacco[J]. Plant Cell Physiol, 2011, 52(5):909-921.DOI: 10.1093/pcp/pcr043.
doi: 10.1093/pcp/pcr043
|
[20] |
TIAN L, DELLAPENNA D, ZEEVAART J A D. Effect of hydroxylated carotenoid deficiency on ABA accumulation in Arabidopsis[J]. Physiol Plant, 2004, 122(3):314-320.DOI: 10.1111/j.1399-3054.2004.00409.x.
doi: 10.1111/j.1399-3054.2004.00409.x.
|
[21] |
ZHAO S S, ZHANG Q K, LIU MY, et al. Regulation of plant responses to salt stress[J]. Int J Mol Sci, 2021, 22(9): 4609.DOI: 10.3390/ijms22094609.
doi: 10.3390/ijms22094609
|
[22] |
DU H, WU N, CHANG Y, et al. Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice[J]. Plant Mol Biol, 2013, 83(4/5):475-488.DOI: 10.1007/s11103-013-0103-7.
doi: 10.1007/s11103-013-0103-7
|
[23] |
于思礼, 刘雪, 张昭宇, 等. 甜菜素的生物合成及其代谢调控进展[J]. 中国生物工程杂志, 2018, 38(8):84-91.
|
|
YU S L, LIU X, ZHANG Z Y, et al. Advances of betalains biosynthesis and metabolic regulation[J]. China Biotechnol, 2018, 38(8):84-91.DOI: 10.13523/j.cb.20180811.
doi: 10.13523/j.cb.20180811
|
[24] |
王长泉, 赵吉强, 陈敏, 等. 过氧化氢参与了黑暗诱导的盐地碱蓬叶片甜菜红素积累[J]. 植物生态学报, 2007, 31(4):748-752.
doi: 10.17521/cjpe.2007.0095
|
|
WANG C Q, ZHAO J Q, CHEN M, et al. Involvement of hydrogen peroxide in betacyanin accumulation induced by dark in leaves of Suaeda salsa[J]. Chin J Plant Ecol, 2007, 31(4):748-752.
doi: 10.17521/cjpe.2007.0095
|
[25] |
王佺珍, 刘倩, 高娅妮, 等. 植物对盐碱胁迫的响应机制研究进展[J]. 生态学报, 2017, 37(16):5565-5577.
|
|
WANG Q Z, LIU Q, GAO Y N, et al. Review on the mechanisms of the response to salinity-alkalinity stress in plants[J]. Acta Ecol Sin, 2017, 37(16):5565-5577.DOI: 10.5846/stxb201605160941.
doi: 10.5846/stxb201605160941
|
[26] |
OKAZAKI Y, SAITO K. Roles of lipids as signaling molecules and mitigators during stress response in plants[J]. Plant J, 2014, 79(4):584-596.DOI: 10.1111/tpj.12556.
doi: 10.1111/tpj.12556
|
[27] |
GUO Q, LIU L, BARKLA B J. Membrane lipid remodeling in response to salinity[J]. Int J Mol Sci, 2019, 20(17):4264.DOI: 10.3390/ijms20174264.
doi: 10.3390/ijms20174264
|
[28] |
TSYDENDAMBAEV V D, IVANOVA T V, KHALILOVA L A, et al. Fatty acid composition of lipids in vegetative organs of the halophyte Suaeda altissima under different levels of salinity[J]. Russ J Plant Physiol, 2013, 60(5):661-671.DOI: 10.1134/s1021443713050142.
doi: 10.1134/s1021443713050142
|
[29] |
LIU S S, WANG W Q, LI M, et al. Antioxidants and unsaturated fatty acids are involved in salt tolerance in peanut[J]. Acta Physiol Plant, 2017, 39(9):1-10.DOI: 10.1007/s11738-017-2501-y.
doi: 10.1007/s11738-017-2501-y
|
[30] |
SHANAB S M M, HAFEZ R M, FOUAD A S. A review on algae and plants as potential source of arachidonic acid[J]. J Adv Res, 2018, 11:3-13.DOI: 10.1016/j.jare.2018.03.004.
doi: 10.1016/j.jare.2018.03.004
|
[31] |
SAVCHENKO T, WALLEY J W, CHEHAB E W, et al. Arachidonic acid: an evolutionarily conserved signaling molecule modulates plant stress signaling networks[J]. Plant Cell, 2010, 22(10):3193-3205.DOI: 10.1105/tpc.110.073858.
doi: 10.1105/tpc.110.073858
|
[32] |
GONDIM F A, GOMES-FILHO E, COSTA J H, et al. Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize[J]. Plant Physiol Biochem, 2012, 56:62-71.DOI: 10.1016/j.plaphy.2012.04.012.
doi: 10.1016/j.plaphy.2012.04.012
|