基于SSR标记的福建省闽楠代表性群体遗传多样性分析

冯一宁, 李因刚, 祁铭, 周鹏燕, 周琦, 董乐, 徐立安

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (4) : 102-108.

PDF(2027 KB)
PDF(2027 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (4) : 102-108. DOI: 10.12302/j.issn.1000-2006.202111016
研究论文

基于SSR标记的福建省闽楠代表性群体遗传多样性分析

作者信息 +

Genetic diversity analyses of Phoebe bournei representative populations in Fujian Province based on SSR markers

Author information +
文章历史 +

摘要

【目的】闽楠(Phoebe bournei)是珍贵的用材树种,被列为国家Ⅱ级重点保护野生植物。以福建省内保存较好的3个代表性闽楠自然群体为对象,研究其群体间及群体内的遗传变异水平及遗传结构特征,探究其成因,为闽楠天然群体的保护和利用提供依据。【方法】利用自行开发的18个多态性SSR标记,对3个群体共计88个样本进行检测,利用Popgene 32软件,分析群体的有效等位基因数(Ne)、观测杂合度(Ho)、期望杂合度(He)、基因分化系数(Fst))等,利用Structure软件研究群体的遗传结构。【结果】3个闽楠群体的平均期望杂合度为0.629,表明遗传多样性较丰富;3个群体的平均观测杂合度明显低于期望杂合度,群体内近交程度较高[近交系数(F)=0.280)],尤其是罗卜岩群体Ho/He差异大(0.399/0.608)、近交程度高(F=0.378);分子变异分析显示,闽楠的变异主要来源于群体内,群体间存在中等程度的分化(Fst=0.197)。聚类分析结果表明,3个群体闽楠样本可明显区分为两类,两类间存在明显的遗传分化,福建罗卜岩和福建顺昌群体为第Ⅰ类,且两者地理位置较近;福建政和与其距离较远,为第Ⅱ类。【结论】福建闽楠3个代表性群体具有较高的遗传多样性,但具有小群体特征,群体内近交程度较高,而地理隔离和人为活动使闽楠具有一定程度的遗传分化;应采取措施使群体内充分异交,以维持闽楠群体较高的遗传多样性。

Abstract

【Objective】 Phoebe bournei is a precious timber tree, and listed as a national Class Ⅱ key-protected wild plant. This study aimed to understand the genetic variation levels and structural characteristics of the three representative and well-preserved natural populations (Luoboyan, Shunchang and Zhenghe) of P. bournei in Fujian Province, China, and explore the causes of genetic variation to provide a basis for the protection and utilization of natural populations. 【Method】 We used 18 self-developed polymorphic SSR markers to select 88 samples from the three populations. The effective number of alleles (Ne), observed heterozygosity (Ho), expected heterozygosity (He), and gene differentiation coefficient (Fst) were analyzed using Popgene 32 software. Besides, Structure software was used to study the genetic structure of the populations. 【Result】 The average expected heterozygosity of the three populations was 0.629, indicating the relatively rich genetic diversity of the three populations. In addition, the average observed heterozygosity of the three populations was significantly lower than expected, with a high inbreeding degree (F = 0.280). In particular, the Ho/He ratio of the Luobuyan population was large (0.399/0.608), with a high degree of inbreeding (0.378). The molecular variation analysis revealed that the variations in P. bournei populations were mainly from within, and a moderate degree of differentiation existed between populations (Fst = 0.197). The cluster analysis results indicated that the samples from the three populations could be divided into two groups, with an obvious genetic differentiation between them. Luoboyan and Shunchang populations comprised the first group because of their close geographical locations, and Zhenghe population formed the second because of being located distantly. 【Conclusion】 The three representative populations of P. bournei in Fujian Province had the high genetic diversity but small population characteristics, with a relatively high degree of inbreeding within the populations. However, geographical isolation and human activities had caused the P. bournei populations to attain a certain degree of genetic differentiations. Measures should be adopted to enable the full outcrossing of the populations to maintain the high genetic diversity of P. bournei.

关键词

闽楠 / SSR标记 / 遗传多样性 / 遗传分化 / 遗传结构

Key words

Phoebe bournei / SSR markers / genetic diversity / genetic differentiation / genetic structure

引用本文

导出引用
冯一宁, 李因刚, 祁铭, . 基于SSR标记的福建省闽楠代表性群体遗传多样性分析[J]. 南京林业大学学报(自然科学版). 2022, 46(4): 102-108 https://doi.org/10.12302/j.issn.1000-2006.202111016
FENG Yining, LI Yingang, QI Ming, et al. Genetic diversity analyses of Phoebe bournei representative populations in Fujian Province based on SSR markers[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(4): 102-108 https://doi.org/10.12302/j.issn.1000-2006.202111016
中图分类号: S722   

参考文献

[1]
傅立国, 金鉴明. 中国植物红皮书——稀有濒危植物[M]. 北京: 科学出版社, 1991:358-359.
FU L G, JIN J M. China plant red data book:rare and endangered plants[M]. Beijing: Science Press, 1991: 358-359.
[2]
郑金兴, 黄锦学, 王珍珍, 等. 闽楠人工林细根寿命及其影响因素[J]. 生态学报, 2012, 32(23):7532-7539.
ZHENG J X, HUANG J X, WANG Z Z, et al. Fine root longevity and controlling factors in a Phoebe bournei plantation[J]. Acta Ecol Sin, 2012, 32(23):7532-7539.DOI:10.5846/stxb201110231566.
[3]
唐星林, 刘光正, 姜姜, 等. 遮阴对闽楠一年生和三年生幼树叶绿素荧光特性及能量分配的影响[J]. 生态学杂志, 2020, 39(10):3247-3254.
TANG X L, LIU G Z, JIANG J, et al. Effects of shading on the chlorophyll fluorescence characteristics and light energy partitioning of one-and three-year-old Phoebe bournei seedlings[J]. Chin J Ecol, 2020, 39(10):3247-3254.DOI:10.13292/j.1000-4890.202010.013.
[4]
何应会, 梁瑞龙, 蒋燚, 等. 珍贵树种闽楠研究进展及其发展对策[J]. 广西林业科学, 2013, 42(4):365-370.
HE Y H, LIANG R L, JIANG Y, et al. Research progress of precious species Phoebe bournei and its development strategies[J]. Guangxi For Sci, 2013, 42(4):365-370.DOI:10.19692/j.cnki.gfs.2013.04.015.
[5]
陈星, 高子厚. DNA分子标记技术的研究与应用[J]. 分子植物育种, 2019, 17(6):1970-1977.
CHEN X, GAO Z H. The study and application of DNA molecular marker technique[J]. Mol Plant Breed, 2019, 17(6):1970-1977.DOI:10.13271/j.mpb.017.001970.
[6]
WAHLSTEEN E. SSR markers distinguish critically endangered Acer campestre populations from cryptic invading gene pools[J]. Willdenowia, 2021, 51(1):115-125.DOI:10.3372/wi.51.51109.
[7]
LI Q Y, SU X J, MA H H, et al. Development of genic SSR marker resources from RNA-seq data in Camellia japonica and their application in the genus Camellia[J]. Sci Rep, 2021, 11(1):9919.DOI:10.1038/s41598-021-89350-w.
[8]
李新军, 黄敏仁, 潘惠新, 等. 林木基因组中的微卫星(SSR)及其应用[J]. 南京林业大学学报, 1999, 23(5):64-69.
LI X J, HUANG M R, PAN H X, et al. Microsatellite markers and appication in the forestry genome[J]. J Nanjing For Univ, 1999, 23(5):64-69.DOI:10.3969/j.issn.1000-2006.1999.05.015.
[9]
程小毛, 黄晓霞. SSR标记开发及其在植物中的应用[J]. 中国农学通报, 2011, 27(5):304-307.
CHENG X M, HUANG X X. Development and application of SSR markers in plants[J]. Chin Agric Sci Bull, 2011, 27(5):304-307.
[10]
江香梅, 温强, 叶金山, 等. 闽楠天然种群遗传多样性的RAPD分析[J]. 生态学报, 2009, 29(1):438-444.
JIANG X M, WEN Q, YE J S, et al. RAPD analysis on genetic diversity in eight natural populations of Phoebe bournei from Fujian and Jiangxi Province,China[J]. Acta Ecol Sin, 2009, 29(1):438-444.DOI:10.3321/j.issn:1000-0933.2009.01.052.
[11]
李娟, 董利军, 林建勇, 等. 楠木树种种质资源的ISSR分析[J]. 分子植物育种, 2018, 16(19):6428-6435.
LI J, DONG L J, LIN J Y, et al. The ISSR analysis of Phoebe nees germplasm resources[J]. Mol Plant Breed, 2018, 16(19):6428-6435.DOI:10.13271/j.mpb.016.006428.
[12]
GE Y J, LIU Y J, SHEN A H, et al. Fengshui forests conserve genetic diversity: a case study of Phoebe bournei (Hemsl.) Yang in Southern China[J]. Genet Mol Res, 2015, 14(1):1986-1993.DOI:10.4238/2015.March.20.8.
[13]
时小东, 朱学慧, 盛玉珍, 等. 基于转录组序列的楠木SSR分子标记开发[J]. 林业科学, 2016, 52(11):71-78.
SHI X D, ZHU X H, SHENG Y Z, et al. Development of SSR markers based on transcriptome sequence of Phoebe zhennan[J]. Sci Silvae Sin, 2016, 52(11):71-78.
[14]
刘丹, 刘斌, 曾钦朦, 等. 闽楠优良基因型遗传差异的SSR分析[J]. 森林与环境学报, 2019, 39(5):449-453.
LIU D, LIU B, ZENG Q M, et al. Genetic diversity of the superior genotypes of Phoebe bournei using SSR markers[J]. J For Environ, 2019, 39(5):449-453.DOI:10.13324/j.cnki.jfcf.2019.05.001.
[15]
黄雨芹, 尹光天, 杨锦昌, 等. 基于SSR分子标记的闽楠(Phoebe bournei)核心种质的构建[J]. 分子植物育种, 2020, 18(8):2641-2648.
HUANG Y Q, YIN G T, YANG J C, et al. Developing a mini core germplasm of Phoebe bournei based on SSR molecular marker[J]. Mol Plant Breed, 2020, 18(8):2641-2648.DOI:10.13271/j.mpb.018.002641.
[16]
祁铭, 周琦, 倪州献, 等. 基于SSR技术的古银杏群体遗传结构分析[J]. 生态学杂志, 2019, 38(9):2902-2910.
QI M, ZHOU Q, NI Z X, et al. Genetic structure analysis of ancient Ginkgo biloba L.populations based on SSR markers[J]. Chin J Ecol, 2019, 38(9):2902-2910.DOI:10.13292/j.1000-4890.201909.017.
[17]
EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study[J]. Mol Ecol, 2005, 14(8):2611-2620.DOI:10.1111/j.1365-294X.2005.02553.x.
[18]
徐立安, 李新军, 潘惠新, 等. 用SSR研究栲树群体遗传结构[J]. 植物学报, 2001, 43(4):409-412.
XU L, LI X J, PAN H X, et al. Study on population genetic structure in Castanopsis fargesii with microsatellite markers[J]. Bull Bota, 2001, 43(4):409-412.DOI:10.3321/j.issn:1672-9072.2001.04.015.
[19]
陈罡, 卜鹏图, 于世河, 等. 基于SSR标记的辽宁蒙古栎天然群体遗传多样性研究[J]. 沈阳农业大学学报, 2020, 51(6):727-733.
CHEN G, BU P T, YU S H, et al. Study on genetic diversity of natural Quercus mongolica populations in Liaoning Province revealed by SSR markers[J]. J Shenyang Agric Univ, 2020, 51(6):727-733.DOI:10.3969/j.issn.1000-1700.2020.06.012.
[20]
ZHOU P Y, HUI L X, HUANG S J, et al. Study on the genetic structure based on geographic populations of the endangered tree species:Liriodendron chinense[J]. Forests, 2021, 12(7):917.DOI:10.3390/f12070917.
[21]
WRIGHT S. Evolution and the genetics of populations. Vol. 4. Variability within and among natural populations[M]. Chicago: University of Chicago Press, 1978:97-159,.
[22]
张馨方, 张树航, 李颖, 等. 基于SSR标记的板栗种质资源遗传多样性分析[J]. 分子植物育种, 2020, 18(15):5164-5175.
ZHANG X F, ZHANG S H, LI Y, et al. Genetic diversity analysis of Castanea mollissima germplasm resources based on SSR markers[J]. Mol Plant Breed, 2020, 18(15):5164-5175.DOI:10.13271/j.mpb.018.005164.

基金

浙江省省属科研院所扶持专项(2021F1065-1)

编辑: 吴祝华
PDF(2027 KB)

Accesses

Citation

Detail

段落导航
相关文章

/