南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (6): 73-82.doi: 10.12302/j.issn.1000-2006.202205016
所属专题: 南京林业大学120周年校庆特刊
收稿日期:
2022-05-12
修回日期:
2022-08-17
出版日期:
2022-11-30
发布日期:
2022-11-24
通讯作者:
陈金慧
基金资助:
HAO Zhaodong(), SHI Jisen, CHEN Jinhui()
Received:
2022-05-12
Revised:
2022-08-17
Online:
2022-11-30
Published:
2022-11-24
Contact:
CHEN Jinhui
摘要:
花色是一种重要的花性状,对于有花植物的观赏园艺、生殖生态以及物种演化均具有非常关键的作用。有花植物花着色的关键决定因素是花色素的合成和沉积。类胡萝卜素作为一类重要的天然色素,不仅具有营养和药理特性,同时还是许多有花植物花着色的呈色色素。笔者对植物中的类胡萝卜素代谢途径及相关基因进行了梳理,并着重总结了类胡萝卜素代谢基因的表达及其转录调控对植物花着色的影响。当前,已知花中类胡萝卜素代谢基因的表达与类胡萝卜素积累及花着色紧密相关,但是关于这些基因在花中的转录调控机制研究还处于起步阶段。植物的花器官似乎采取了与叶、果实等其他器官完全不同的策略来精细调控类胡萝卜素的生物合成与积累,并且不同植物间尚未发现共通之处。笔者基于目前的研究进展,对未来类胡萝卜素介导的花着色调控机制研究进行了展望,认为随着高通量组学技术和现代分子生物学技术的迅猛发展,可尝试结合基因组、转录组、代谢组及最新的单细胞组学和空间组学等多组学技术和遗传转化及以CRISPR/Cas9为代表的基因组编辑技术,构建多种植物花着色过程中类胡萝卜素代谢的特异性分子调控网络,以期为进一步研究类胡萝卜素介导的花色变异与演化及花色育种提供有益参考。
中图分类号:
郝兆东,施季森,陈金慧. 类胡萝卜素介导的植物花色调控机制研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 73-82.
HAO Zhaodong, SHI Jisen, CHEN Jinhui. Research progresses on regulatory mechanisms of carotenoid-mediated plant flower coloration[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(6): 73-82.DOI: 10.12302/j.issn.1000-2006.202205016.
[1] | 赵昶灵, 郭维明, 陈俊愉. 植物花色形成及其调控机理[J]. 植物学通报, 2005, 40(1):70-81. |
ZHAO C L, GUO W M, CHEN J Y. Formation of plant color and its regulation mechanism[J]. Chin Bull Bot, 2005, 40(1):70-81. | |
[2] | HOPKINS R, RAUSHER M D. Pollinator-mediated selection on flower color allele drives reinforcement[J]. Science, 2012, 335(6072):1090-1092.DOI:10.1126/science.1215198. |
[3] | TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids[J]. The Plant Journal, 2008, 54(4): 733-749. DOI: 10.1111/j.1365-313X.2008.03447.x. |
[4] | GROTEWOLD E. The genetics and biochemistry of floral pigments[J]. Annu Rev Plant Biol, 2006, 57:761-780.DOI:10.1146/annurev.arplant.57.032905.105248. |
[5] | XU W J, DUBOS C, LEPINIEC L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes[J]. Trends Plant Sci, 2015, 20(3):176-185.DOI:10.1016/j.tplants.2014.12.001. |
[6] | TIMONEDA A, FENG T, SHEEHAN H, et al. The evolution of betalain biosynthesis in Caryophyllales[J]. New Phytol, 2019, 224(1):71-85.DOI:10.1111/nph.15980. |
[7] | HATLESTAD G J, AKHAVAN N A, SUNNADENIYA R M, et al. The beet Y locus encodes an anthocyanin MYB-like protein that activates the betalain red pigment pathway[J]. Nat Genet, 2015, 47(1):92-96.DOI:10.1038/ng.3163. |
[8] | SUN T H, YUAN H, CAO H B, et al. Carotenoid metabolism in plants:the role of plastids[J]. Mol Plant, 2018, 11(1):58-74.DOI:10.1016/j.molp.2017.09.010. |
[9] | STANLEY L, YUAN Y W. Transcriptional regulation of carotenoid biosynthesis in plants:so many regulators,so little consensus[J]. Front Plant Sci, 2019, 10:1017.DOI:10.3389/fpls.2019.01017. |
[10] | PAINE J A, SHIPTON C A, CHAGGAR S, et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content[J]. Nat Biotechnol, 2005, 23(4):482-487.DOI:10.1038/nbt1082. |
[11] | ZHU C F, NAQVI S, BREITENBACH J, et al. Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize[J]. Proc Natl Acad Sci USA, 2008, 105(47):18232-18237.DOI:10.1073/pnas.0809737105. |
[12] | ZHOU X J, WELSCH R, YANG Y, et al. Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis[J]. PNAS, 2015, 112(11):3558-3563.DOI:10.1073/pnas.1420831112. |
[13] | TOLEDO-ORTIZ G, JOHANSSON H, LEE K P, et al. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription[J]. PLoS Genet, 2014, 10(6):e1004416.DOI:10.1371/journal.pgen.1004416. |
[14] | FUJISAWA M, SHIMA Y, NAKAGAWA H, et al. Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins[J]. Plant Cell, 2014, 26(1):89-101.DOI:10.1105/tpc.113.119453. |
[15] | LU S W, YE J L, ZHU K J, et al. A fruit ripening-associated transcription factor CsMADS5 positively regulates carotenoid biosynthesis in citrus[J]. J Exp Bot, 2021, 72(8):3028-3043.DOI:10.1093/jxb/erab045. |
[16] | ARIAS D, ORTEGA A, GONZÁLEZ-CALQUIN C, et al. Development and carotenoid synthesis in dark-grown carrot taproots require PHYTOCHROME RAPIDLY REGULATED1[J]. Plant Physiol, 2022, 189(3):1450-1465.DOI:10.1093/plphys/kiac097. |
[17] | BREITENBACH J, SANDMANN G. ζ-Carotene cis isomers as products and substrates in the plant poly-cis-carotenoid biosynthetic pathway to lycopene[J]. Planta, 2005, 220(5):785-793.DOI:10.1007/s00425-004-1395-2. |
[18] | ISAACSON T, OHAD I, BEYER P, et al. Analysis in vitro of the enzyme CRTISO establishes a poly-cis-carotenoid biosynthesis pathway in plants[J]. Plant Physiol, 2004, 136(4):4246-4255.DOI:10.1104/pp.104.052092. |
[19] | CHEN Y, LI F Q, WURTZEL E T. Isolation and characterization of the Z-ISO gene encoding a missing component of carotenoid biosynthesis in plants[J]. Plant Physiol, 2010, 153(1):66-79.DOI:10.1104/pp.110.153916. |
[20] | BARTLEY G E, VIITANEN P V, PECKER I, et al. Molecular cloning and expression in photosynthetic bacteria of a soybean cDNA coding for phytoene desaturase,an enzyme of the carotenoid biosynthesis pathway[J]. Proc Natl Acad Sci USA, 1991, 88(15):6532-6536.DOI:10.1073/pnas.88.15.6532. |
[21] | FALSAFI S R, ROSTAMABADI H, BABAZADEH A, et al. Lycopene nanodelivery systems;recent advances[J]. Trends Food Sci Technol, 2022, 119:378-399.DOI:10.1016/j.tifs.2021.12.016. |
[22] | CUNNINGHAM F X J, POGSON B, SUN Z, et al. Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation[J]. Plant Cell, 1996, 8(9):1613-1626.DOI:10.1105/tpc.8.9.1613. |
[23] | CUNNINGHAM F X J, GANTT E. One ring or two?Determination of ring number in carotenoids by lycopene epsilon-cyclases[J]. Proc Natl Acad Sci USA, 2001, 98(5):2905-2910.DOI:10.1073/pnas.051618398. |
[24] | KIM J, DELLAPENNA D. Defining the primary route for lutein synthesis in plants:the role of Arabidopsis carotenoid beta-ring hydroxylase CYP97A3[J]. Proc Natl Acad Sci USA, 2006, 103(9):3474-3479.DOI:10.1073/pnas.0511207103. |
[25] | TIAN L, MUSETTI V, KIM J, et al. The Arabidopsis LUT1 locus encodes a member of the cytochrome p450 family that is required for carotenoid epsilon-ring hydroxylation activity[J]. PNAS, 2004, 101(1):402-407.DOI:10.1073/pnas.2237237100. |
[26] | SUN Z, GANTT E, CUNNINGHAM F X J. Cloning and functional analysis of the beta-carotene hydroxylase of Arabidopsis thaliana[J]. J Biol Chem, 1996, 271(40):24349-24352.DOI:10.1074/jbc.271.40.24349. |
[27] | YAMAMOTO H Y. Biochemistry of the violaxanthin cycle in higher plants[J]. Pure Appl Chem, 1979, 51(3):639-648.DOI:10.1351/pac197951030639. |
[28] | MARIN E, NUSSAUME L, QUESADA A, et al. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia,a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana[J]. EMBO J, 1996, 15(10):2331-2342. |
[29] | BUGOS R C, YAMAMOTO H Y. Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli[J]. Proc Natl Acad Sci USA, 1996, 93(13):6320-6325.DOI:10.1073/pnas.93.13.6320. |
[30] | AL-BABILI S, HUGUENEY P, SCHLEDZ M, et al. Identification of a novel gene coding for neoxanthin synthase from Solanum tuberosum[J]. FEBS Lett, 2000, 485(2/3):168-172.DOI:10.1016/S0014-5793(00)02193-1. |
[31] | BOUVIER F, HUGUENEY P, D’HARLINGUE A, et al. Xanthophyll biosynthesis in chromoplasts:isolation and molecular cloning of an enzyme catalyzing the conversion of 5,6-epoxycarotenoid into ketocarotenoid[J]. Plant J, 1994, 6(1):45-54.DOI:10.1046/j.1365-313x.1994.6010045.x. |
[32] | YU S, LI M, DUBCOVSKY J, et al. Mutant combinations of lycopene varepsilon-cyclase and beta-carotene hydroxylase 2 homoeologs increased beta-carotene accumulation in endosperm of tetraploid wheat (Triticum turgidum L.) grains[J]. Plant Biotechnology Journal, 2022, 20(3): 564-576. DOI: 10.1111/pbi.13738. |
[33] | WALTER M H, STRACK D. Carotenoids and their cleavage products:biosynthesis and functions[J]. Nat Prod Rep, 2011, 28(4):663-692.DOI:10.1039/C0NP00036A. |
[34] | TAN B C, JOSEPH L M, DENG W T, et al. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family[J]. Plant J, 2003, 35(1):44-56.DOI:10.1046/j.1365-313x.2003.01786.x. |
[35] | SCHWARTZ S H, QIN X Q, ZEEVAART J A D. Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants,genes,and enzymes[J]. Plant Physiol, 2003, 131(4):1591-1601.DOI:10.1104/pp.102.017921. |
[36] | VOGEL J T, TAN B C, MCCARTY D R, et al. The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity,cleaving multiple carotenoids at two different bond positions[J]. J Biol Chem, 2008, 283(17):11364-11373.DOI:10.1074/jbc.M710106200. |
[37] | LI T, DENG Y J, LIU J X, et al. DcCCD4 catalyzes the degradation of alpha-carotene and beta-carotene to affect carotenoid accumulation and taproot color in carrot[J]. The Plant Journal, 2021, 108(4): 1116-1130. DOI: 10.1111/tpj.15498. |
[38] | RUYTER-SPIRA C, AL-BABILI S, VAN DER KROL S, et al. The biology of strigolactones[J]. Trends Plant Sci, 2013, 18(2):72-83.DOI:10.1016/j.tplants.2012.10.003. |
[39] | KO M R, SONG M H, KIM J K, et al. RNAi-mediated suppression of three carotenoid-cleavage dioxygenase genes,OsCCD1,4a,and 4b,increases carotenoid content in rice[J]. J Exp Bot, 2018, 69(21):5105-5116.DOI:10.1093/jxb/ery300. |
[40] | OHMIYA A. Diversity of carotenoid composition in flower petals[J]. Jpn Agric Res Q JARQ, 2011, 45(2):163-171.DOI:10.6090/jarq.45.163. |
[41] | ZHU C F, BAI C, SANAHUJA G, et al. The regulation of carotenoid pigmentation in flowers[J]. Arch Biochem Biophys, 2010, 504(1):132-141.DOI:10.1016/j.abb.2010.07.028. |
[42] | XIONG C, LUO D, LIN A H, et al. A tomato B-box protein SlBBX20 modulates carotenoid biosynthesis by directly activating PHYTOENE SYNTHASE 1,and is targeted for 26S proteasome-mediated degradation[J]. New Phytol, 2019, 221(1):279-294.DOI:10.1111/nph.15373. |
[43] | DEL VILLAR-MARTÍNEZ A A, GARCÍA-SAUCEDO P A, CARABEZ-TREJO A, et al. Carotenogenic gene expression and ultrastructural changes during development in marigold[J]. J Plant Physiol, 2005, 162(9):1046-1056.DOI:10.1016/j.jplph.2004.12.004. |
[44] | MOEHS C P, TIAN L, OSTERYOUNG K W, et al. Analysis of carotenoid biosynthetic gene expression during marigold petal development[J]. Plant Mol Biol, 2001, 45(3):281-293.DOI:10.1023/A:1006417009203. |
[45] | ZHANG H L, ZHANG S Y, ZHANG H, et al. Carotenoid metabolite and transcriptome dynamics underlying flower color in marigold (Tagetes erecta L.)[J]. Sci Rep, 2020, 10:16835.DOI:10.1038/s41598-020-73859-7. |
[46] | KISHIMOTO S, MAOKA T, NAKAYAMA M, et al. Carotenoid composition in petals of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura)[J]. Phytochemistry, 2004, 65(20):2781-2787.DOI:10.1016/j.phytochem.2004.08.038. |
[47] | PARK C H, CHAE S C, PARK S Y, et al. Anthocyanin and carotenoid contents in different cultivars of Chrysanthemum (Dendranthema grandiflorum Ramat.) flower[J]. Molecules, 2015, 20(6):11090-11102.DOI:10.3390/molecules200611090. |
[48] | KISHIMOTO S, OHMIYA A. Regulation of carotenoid biosynthesis in petals and leaves of Chrysanthemum (Chrysanthemum morifolium)[J]. Physiol Plant, 2006, 128(3):436-447.DOI:10.1111/j.1399-3054.2006.00761.x. |
[49] | OHMIYA A, KISHIMOTO S, AIDA R, et al. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in Chrysanthemum petals[J]. Plant Physiol, 2006, 142(3):1193-1201.DOI:10.1104/pp.106.087130. |
[50] | HUANG H F, GAO X K, GAO X, et al. Flower color mutation,pink to orange,through CmGATA4-CCD4a-5 module regulates carotenoids degradation in chrysanthemum[J]. Plant Sci, 2022, 322:111290.DOI:10.1016/j.plantsci.2022.111290. |
[51] | GIULIANO G, BARTLEY G E, SCOLNIK P A. Regulation of carotenoid biosynthesis during tomato development[J]. Plant Cell, 1993, 5(4):379-387.DOI:10.1105/tpc.5.4.379. |
[52] | RONEN G, COHEN M, ZAMIR D, et al. Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta[J]. Plant J Cell Mol Biol, 1999, 17(4):341-51. |
[53] | PECKER I, GABBAY R, CUNNINGHAM F X Jr, et al. Cloning and characterization of the cDNA for lycopene β-cyclase from tomato reveals decrease in its expression during fruit ripening[J]. Plant Mol Biol, 1996, 30(4):807-819.DOI:10.1007/BF00019013. |
[54] | CORONA V, ARACRI B, KOSTURKOVA G, et al. Regulation of a carotenoid biosynthesis gene promoter during plant development[J]. Plant J, 1996, 9(4):505-512.DOI:10.1046/j.1365-313x.1996.09040505.x. |
[55] | GAO M, QU H, GAO L, et al. Dissecting the mechanism of Solanum lycopersicum and Solanum chilense flower colour formation[J]. Plant Biol (Stuttg), 2015, 17(1):1-8.DOI:10.1111/plb.12186. |
[56] | GALPAZ N, RONEN G, KHALFA Z, et al. A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus[J]. Plant Cell, 2006, 18(8):1947-1960.DOI:10.1105/tpc.105.039966. |
[57] | HOSHINO A, JAYAKUMAR V, NITASAKA E, et al. Genome sequence and analysis of the Japanese morning glory Ipomoea nil[J]. Nat Commun, 2016, 7:13295.DOI:10.1038/ncomms13295. |
[58] | YAMAMIZO C, KISHIMOTO S, OHMIYA A. Carotenoid composition and carotenogenic gene expression during Ipomoea petal development[J]. J Exp Bot, 2009, 61(3):709-719.DOI:10.1093/jxb/erp335. |
[59] | WATANABE K, ODA-YAMAMIZO C, SAGE-ONO K, et al. Overexpression of carotenogenic genes in the Japanese morning glory Ipomoea (Pharbitis) nil[J]. Plant Biotechnology, 2017, 34(4): 177-185. DOI: 10.5511/plantbiotechnology.17.1016a. |
[60] | WATANABE K, ODA-YAMAMIZO C, SAGE-ONO K, et al. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4[J]. Transgenic Res, 2018, 27(1):25-38.DOI:10.1007/s11248-017-0051-0. |
[61] | 向其柏, 刘玉莲. 中国桂花品种图志[M]. 杭州: 浙江科学技术出版社, 2008. |
XIANG Q B, LIU Y L. An illustrated monograph of the sweet osmanthus cultivars in China[M]. Hangzhou: Zhejiang Science & Technology Press, 2008. | |
[62] | 臧德奎, 向其柏. 桂花品种研究[J]. 南京林业大学学报(自然科学版), 2004(S1):7-13. |
ZANG D K, XIANG Q B. Studies on Osmanthus fragrans cultivars[J]. J Nanjing For Univ (Nat Sci Ed), 2004(S1):7-13.DOI:10.3969/j.issn.1000-2006.2014.07.002. | |
[63] | WANG Y G, ZHANG C, DONG B, et al. Carotenoid accumulation and its contribution to flower coloration of Osmanthus fragrans[J]. Front Plant Sci, 2018, 9:1499.DOI:10.3389/fpls.2018.01499. |
[64] | CHEN H G, ZENG X L, YANG J, et al. Whole-genome resequencing of Osmanthus fragrans provides insights into flower color evolution[J]. Hortic Res, 2021, 8:98.DOI:10.1038/s41438-021-00531-0. |
[65] | LIU Y C, DONG B, ZHANG C, et al. Effects of exogenous abscisic acid (ABA) on carotenoids and petal color in Osmanthus fragrans ‘Yanhonggui’[J]. Plants (Basel), 2020, 9(4):454.DOI:10.3390/plants9040454. |
[66] | XI W, HE Y H, ZHU L L, et al. CPTA treatment reveals potential transcription factors associated with carotenoid metabolism in flowers of Osmanthus fragrans[J]. Hortic Plant J, 2021, 7(5):479-487.DOI:10.1016/j.hpj.2021.03.002. |
[67] | HAN Y J, WANG X H, CHEN W C, et al. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in flower petal of Osmanthus fragrans[J]. Tree Genet Genomes, 2014, 10(2):329-338.DOI:10.1007/s11295-013-0687-8. |
[68] | HAO Z D, LIU S Q, HU L F, et al. Transcriptome analysis and metabolic profiling reveal the key role of carotenoids in the petal coloration of Liriodendron tulipifera[J]. Hortic Res, 2020, 7:70.DOI:10.1038/s41438-020-0287-3. |
[69] | WANG W J, LIU G S, NIU H X, et al. The F-box protein COI1 functions upstream of MYB305 to regulate primary carbohydrate metabolism in tobacco (Nicotiana tabacum L.cv.TN90)[J]. J Exp Bot, 2014, 65(8):2147-2160.DOI:10.1093/jxb/eru084. |
[70] | LIU G Y, REN G, GUIRGIS A, et al. The MYB305 transcription factor regulates expression of nectarin genes in the ornamental tobacco floral nectary[J]. Plant Cell, 2009, 21(9):2672-2687.DOI:10.1105/tpc.108.060079. |
[71] | SAGAWA J M, STANLEY L E, LAFOUNTAIN A M, et al. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers[J]. New Phytol, 2016, 209(3):1049-1057.DOI:10.1111/nph.13647. |
[72] | STANLEY L E, DING B Q, SUN W, et al. A tetratricopeptide repeat protein regulates carotenoid biosynthesis and chromoplast development in monkeyflowers (Mimulus)[J]. Plant Cell, 2020, 32(5):1536-1555.DOI:10.1105/tpc.19.00755. |
[73] | MENG Y Y, WANG Z Y, WANG Y Q, et al. The MYB activator WHITE PETAL1 associates with MtTT8 and MtWD40-1 to regulate carotenoid-derived flower pigmentation in Medicago truncatula[J]. Plant Cell, 2019, 31(11):2751-2767.DOI:10.1105/tpc.19.00480. |
[74] | LI P H, CHEN B B, ZHANG G Y, et al. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8[J]. New Phytol, 2016, 210(3):905-921.DOI:10.1111/nph.13816. |
[75] | HAN Y J, WU M, CAO L Y, et al. Characterization of OfWRKY3,a transcription factor that positively regulates the carotenoid cleavage dioxygenase gene OfCCD4 in Osmanthus fragrans[J]. Plant Mol Biol, 2016, 91(4):485-496.DOI:10.1007/s11103-016-0483-6. |
[76] | 陆晨飞, 刘钰婷. 类胡萝卜素代谢调控与植物颜色变异[J]. 北方园艺, 2016(16):193-199. |
LU C F, LIU Y T. Plant color mutants and the regulation of carotenoids metabolism[J]. North Hortic, 2016(16):193-199.DOI:10.11937/bfyy.201616049. | |
[77] | MENG F L, LI Y Y, LI S W, et al. Carotenoid biofortification in tomato products along whole agro-food chain from field to fork[J]. Trends Food Sci Technol, 2022, 124:296-308.DOI:10.1016/j.tifs.2022.04.023. |
[78] | RODRIGUEZ-CONCEPCION M, DARÒS J A. Transient expression systems to rewire plant carotenoid metabolism[J]. Curr Opin Plant Biol, 2022, 66:102190.DOI:10.1016/j.pbi.2022.102190. |
[79] | EISENSTEIN M. Seven technologies to watch in 2022[J]. Nature, 2022, 601(7894):658-661.DOI:10.1038/d41586-022-00163-x. |
[80] | ANJANAPPA R B, GRUISSEM W. Current progress and challenges in crop genetic transformation[J]. J Plant Physiol, 2021, 261:153411.DOI:10.1016/j.jplph.2021.153411. |
[81] | ZHANG Y X, MALZAHN A A, SRETENOVIC S, et al. The emerging and uncultivated potential of CRISPR technology in plant science[J]. Nat Plants, 2019, 5(8):778-794.DOI:10.1038/s41477-019-0461-5. |
[1] | 徐展宏, 朱莹, 金慧颖, 孙操稳, 方升佐. 不同叶色青钱柳叶片色素、多酚含量及光合特性的差异[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 103-110. |
[2] | 路买林, 陈梦娇, 张嘉嘉, 赵建霞, 朱景乐, 杜红岩. ‘红叶’杜仲叶色转变过程中叶片生理指标变化[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 86-92. |
[3] | 张往祥,张龙,江皓,范俊俊,周婷,曹福亮. 观赏海棠新品种‘洛可可女士’[J]. 南京林业大学学报(自然科学版), 2019, 43(04): 203-204. |
[4] | 李文建,沈永宝,史锋厚,贾文庆. 建兰花色形成的成分检测[J]. 南京林业大学学报(自然科学版), 2019, 43(04): 57-62. |
[5] | 浦静,张晶,赵聪,范俊俊,姜文龙,张往祥,王改萍. ‘紫王子'海棠半同胞家系花色特征分析及选优[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 18-24. |
[6] | 吕东林,林琳,郭译文,韩锐,姜静. 紫雨桦耐盐性及花色苷合成相关基因的表达特性[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 25-32. |
[7] | 唐东芹,徐怡倩,袁媛,陶秀花,史益敏. 理化因素对风信子花色苷稳定性的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(04): 69-73. |
[8] | 母洪娜,孙陶泽,杨秀莲,王良桂. 两个桂花品种花色色素相关基因的差异表达[J]. 南京林业大学学报(自然科学版), 2015, 39(03): 183-186. |
[9] | 陈舒博,丁彦芬,赵天鹏. 矮牵牛花色基因工程研究进展[J]. 南京林业大学学报(自然科学版), 2014, 38(增刊): 134-138. |
[10] | 田野,张会慧,张秀丽,王娟,齐飞,孙广玉. 紫丁香叶片发育过程中花色素苷含量与叶绿素荧光和激发能分配的关系[J]. 南京林业大学学报(自然科学版), 2014, 38(01): 59-64. |
[11] | 张伦,刘功骏,何柏球,王飞. 毛杨梅树皮原花色素对小鼠急性毒性及抗氧化性的影响[J]. 南京林业大学学报(自然科学版), 2013, 37(04): 85-89. |
[12] | 方炎明. 森林植被的显花、传粉与繁育系统[J]. 南京林业大学学报(自然科学版), 2012, 36(06): 1-7. |
[13] | 赵昶灵;陈俊愉;刘雪兰;赵兴发;刘全龙. 理化因素对梅花‘南京红须’花色色素颜色呈现的效应[J]. 南京林业大学学报(自然科学版), 2004, 28(02): 27-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||