[1] |
徐锡祥. 林业病虫害特点、原因及综合防治解析[J]. 新农业, 2021(22):22.
|
|
XU X X. Analysis on characteristics,causes and integrated control of forest diseases and pests[J]. Modern Agriculture, 2021(22):22.
|
[2] |
张旭. 森林病虫害的发生特点及综合防治技术[J]. 农业灾害研究, 2021, 11(7):21-22.
|
|
ZHANG X. Occurrence characteristics and integrated control technology of forest diseases and insect pests[J]. J Agric Catastrophology, 2021, 11(7):21-22.
|
[3] |
樊巍, 苑静, 赵波. 森林病虫害的发生特点及综合防治技术[J]. 农业与技术, 2019, 39(23):70-71.
|
|
FAN W, YUAN J, ZHAO B. Occurrence characteristics and integrated control techniques of forest diseases and insect pests[J]. Agric Technol, 2019, 39(23):70-71.DOI:10.19754/j.nyyjs.20191215028.
|
[4] |
NASSER SHAH N A, OSMAN M K, OTHMAN N A, et al. Identification and counting of brown planthopper in paddy field using image processing techniques[J]. Procedia Comput Sci, 2019, 163:580-590.DOI:10.1016/j.procs.2019.12.140.
|
[5] |
WEN C L, WU D X, HU H S, et al. Pose estimation-dependent identification method for field moth images using deep learning architecture[J]. Biosyst Eng, 2015, 136:117-128.DOI:10.1016/j.biosystemseng.2015.06.002.
|
[6] |
WANG R J, ZHANG J, DONG W, et al. A crop pests image classification algorithm based on deep convolutional neural network[J]. TELKOMNIKA (Telecommun Comput Electron Control), 2017, 15(3):1239.DOI:10.12928/TELKOMNIKA.v15i3.5382.
|
[7] |
李静, 陈桂芬, 安宇. 基于优化卷积神经网络的玉米螟虫害图像识别[J]. 华南农业大学学报, 2020, 41(3):110-116.
|
|
LI J, CHEN G F, AN Y. Image recognition of Pyrausta nubilalis based on optimized convolutional neural network[J]. J South China Agric Univ, 2020, 41(3):110-116.DOI:10.7671/j.issn.1001-411X.201907017.
|
[8] |
KARAR M E, ALSUNAYDI F, ALBUSAYMI S, et al. A new mobile application of agricultural pests recognition using deep learning in cloud computing system[J]. Alex Eng J, 2021, 60(5):4423-4432.DOI:10.1016/j.aej.2021.03.009.
|
[9] |
HONG S J, KIM S Y, KIM E, et al. Moth detection from pheromone trap images using deep learning object detectors[J]. Agriculture, 2020, 10(5):170.DOI:10.3390/agriculture10050170.
|
[10] |
GONÇALVES J P, PINTO F A C, QUEIROZ D M, et al. Deep learning architectures for semantic segmentation and automatic estimation of severity of foliar symptoms caused by diseases or pests[J]. Biosyst Eng, 2021, 210:129-142.DOI:10.1016/j.biosystemseng.2021.08.011.
|
[11] |
田洪宝. 基于深度卷积神经网络的林区航拍图像虫害区域分割[D]. 北京: 北京林业大学, 2019.
|
|
TIAN H B. Pest region segmentation of aerial photography image in forest region based on deep convolution neural networks[D]. Beijing: Beijing Forestry University, 2019.
|
[12] |
陈冬梅, 张赫, 魏凯华, 等. 复杂背景下昆虫图像的快速分割与识别[J]. 江苏农业科学, 2021, 49(24):195-204.
|
|
CHEN D M, ZHANG H, WEI K H, et al. Fast segmentation and recognition of insect images in complex background[J]. Jiangsu Agric Sci, 2021, 49(24):195-204. DOI: 10.15889/j.issn.1002-1302.2021.24.034.
|
[13] |
王卫民, 符首夫, 顾榕蓉, 等. 基于卷积神经网络的虫情图像分割和计数方法[J]. 计算机工程与科学, 2020, 42(1):110-116.
|
|
WANG W M, FU S F, GU R R, et al. An insect image segmentation and counting method based on convolutional neural network[J]. Comput Eng & Sci, 2020, 42(1):110-116.DOI:10.3969/j.issn.1007-130X.2020.01.0114.
|
[14] |
张善文, 邵彧, 齐国红, 等. 基于多尺度注意力卷积网络的作物害虫检测[J]. 江苏农业学报, 2021, 37(3):579-588.
|
|
ZHANG S W, SHAO Y, QI G H, et al. Crop pest detection based on multi-scale convolutional network with attention[J]. Jiangsu J Agr Sci, 2021, 37(3):579-588.DOI:10.3969/j.issn.1000-4440.2021.03.005.
|
[15] |
谭富祥, 钱育蓉, 孔钰婷, 等. 基于Transformer的多分支单图像去雨方法[J]. 计算机应用研究, 2022, 39(8):2500-2505,2519.
|
|
TAN F X, QIAN Y R, KONG Y T, et al. Multi-branch single image deraining network based on Transformer[J]. Appl Res Comput, 2022, 39(8):2500-2505, 2519.DOI:10.19734/j.issn.1001-3695.2021.12.0695.
|
[16] |
陈敏, 王君, 董明利, 等. 改进的Mask R-CNN多尺度实例分割算法研究[J]. 激光杂志, 2020, 41(5):40-44.
|
|
CHEN M, WANG J, DONG M L, et al. Research on improved Mask R-CNN for multi-scale instance segmentation method[J]. Laser J, 2020, 41(5):40-44.DOI:10.14016/j.cnki.jgzz.2020.05.040.
|
[17] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[EB/OL].[2022-12-01]. http://arxiv.org/abs/1706.03762.
|
[18] |
田应仲, 卜雪虎. 基于注意力机制与Swin Transformer模型的腰椎图像分割方法[J]. 计量与测试技术, 2021, 48(12):57-61.
|
|
TIAN Y Z, BU X H. Lumbar spine image segmentation method based on attention mechanism and Swin Transformer model[J]. Metrol & Meas Tech, 2021, 48(12):57-61.DOI:10.15988/j.cnki.1004-6941.2021.12.013.
|
[19] |
张重生, 陈杰, 纵瑞星, 等. 基于Transformer的低质场景字符检测算法[J]. 北京邮电大学学报, 2022, 45(2):124-130.
|
|
ZHANG C S, CHEN J, ZONG R X, et al. Transformer based scene character detection over low quality images[J]. J Beijing Univ Posts Telecommun, 2022, 45(2):124-130.DOI:10.13190/j.jbupt.2021-155.
|
[20] |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer:hierarchical vision transformer using shifted windows[C]// IEEE/CVF International Conference on Computer Vision (ICCV).Montreal,QC,Canada.IEEE, 2021:9992-10002.DOI:10.1109/ICCV48922.2021.00986.
|
[21] |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,NV,USA: IEEE, 2017:2961-2969.DOI:10.1109/ICCV.2017.322.
|
[22] |
蒋开彬, 祝文娟, 潘文, 等. 基于SRAP标记的土沉香遗传多样性分析[J]. 中南林业科技大学学报, 2020, 40(1):131-136.
|
|
JIANG K B, ZHU W J, PAN W, et al. Analysis of genetic diversity of Aquilaria sinensis(Lour.) Gilg based on SRAP markers[J]. J Central South Univ For & Technol, 2020, 40(1):131-136.DOI:10.14067/j.cnki.1673-923x.2020.01.016.
|
[23] |
庞圣江, 张培, 杨保国, 等. 林隙大小对土沉香人工更新幼树生长发育的影响[J]. 西北农林科技大学学报(自然科学版), 2020, 48(4):83-88.
|
|
PANG S J, ZHANG P, YANG B G, et al. Effects of gap size on growth of transplanted saplings of Aquilaria sinensis[J]. J Northwest A & F Univ (Nat Sci Ed), 2020, 48(4):83-88.DOI:10.13207/j.cnki.jnwafu.2020.04.011.
|
[24] |
张小霞. 土沉香开发利用研究进展[J]. 防护林科技, 2020(4):63-66.
|
|
ZHANG X X. Research progress on development and utilization of Aquilaria sinensis[J]. Prot For Sci Technol, 2020(4):63-66.DOI:10.13601/j.issn.1005-5215.2020.04.024.
|
[25] |
宋晓琛, 王西洋, 杨光, 等. 无机盐与激素混合对土沉香结香的诱导[J]. 林业科学, 2020, 56(8):121-130.
|
|
SONG X C, WANG X Y, YANG G, et al. Mechanism of agarwood formation under the induction of both inorganic salts and hormones[J]. Sci Silvae Sin, 2020, 56(8):121-130.DOI:10.11707/j.1001-7488.20200814.
|
[26] |
洪仁辉, 尹吉锋, 陈彧, 等. 白木香重要害虫黄野螟研究进展[J]. 热带林业, 2019, 47(3):66-68.
|
|
HONG R H, YIN J F, CHEN Y, et al. Advances in research on the Heortia vitessoides Moore on Aquilaria sinensis[J]. Trop For, 2019, 47(3):66-68.DOI:10.3969/j.issn.1672-0938.2019.03.015.
|
[27] |
王忠, 谢伟忠, 朱诚棋, 等. 黄野螟的羽化和生殖行为节律[J]. 中国森林病虫, 2018, 37(1):24-27,30.
|
|
WANG Z, XIE W Z, ZHU C Q, et al. Circadian rhythm of emergence and reproduction of Heortia vitessoides Moore (Lepidoptera:Crambidae)[J]. For Pest Dis, 2018, 37(1):24-27,30.
|
[28] |
茅裕婷, 张蒙, 靳秀芳, 等. 土沉香对黄野螟的抗性研究[J]. 华南农业大学学报, 2017, 38(6):89-96.
|
|
MAO Y T, ZHANG M, JIN X F, et al. Study on resistance of Aquilaria sinensis against Heortia vitessoides[J]. J South China Agric Univ, 2017, 38(6):89-96.DOI:10.7671/j.issn.1001-411X.2017.06.014.
|
[29] |
严珍, 岳建军. 温度及补充营养对黄野螟生长发育和繁殖的影响[J]. 热带作物学报, 2019, 40(9):1789-1795.
|
|
YAN Z, YUE J J. Effects of temperature and supplementary foods on the development and fecundity of Heortia vitessoides[J]. Chin J Trop Crops, 2019, 40(9):1789-1795.DOI:10.3969/j.issn.1000-2561.2019.09.017.
|
[30] |
高新波, 莫梦竟成, 汪海涛, 等. 小目标检测研究进展[J]. 数据采集与处理, 2021, 36(3):391-417.
|
|
GAO X B, MO M J C, WANG H T, et al. Recent advances in small object detection[J]. J Data Acquis Process, 2021, 36(3):391-417.DOI:10.16337/j.1004-9037.2021.03.001.
|
[31] |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition.Boston,MA, USA:IEEE, 2015:3431-3440.DOI:10.1109/CVPR.2015.7298965.
|
[32] |
HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[EB/OL].[2022-12-01]. http://arxiv.org/abs/1207.0580.
|
[33] |
张海燕, 徐心语, 马雪芬, 等. 超声图像中复合材料褶皱形态的Mask-RCNN识别方法[J]. 物理学报, 2022, 71(7):074302.
|
|
ZHANG H Y, XU X Y, MA X F, et al. Mask-RCNN recognition method of composite fold shape in ultrasound images[J]. Acta Phys Sin, 2022, 71(7):074302.DOI:10.7498/aps.71.20212009.
|
[34] |
LIN T L, CHANG H Y, CHEN K H. Pest and disease identification in the growth of sweet peppers using faster R-CNN[J]. IEEE Int Conf Consumer Electron Taiwan (ICCE TW), 2019:1-2.DOI:10.1109/ICCE-TW46550.2019.8991893.
|
[35] |
周维, 牛永真, 王亚炜, 等. 基于改进的YOLOv4-GhostNet水稻病虫害识别方法[J]. 江苏农业学报, 2022, 38(3):685-695.
|
|
ZHOU W, NIU Y Z, WANG Y W, et al. Rice pests and diseases identification method based on improved YOLOv4-GhostNet[J]. Jiangsu J Agr Sci, 2022, 38(3):685-695.DOI:10.3969/j.issn.1000-4440.2022.03.014.
|
[36] |
刘晨曦, 刘大铭, 杨芳, 等. 基于改进水平集的水稻虫害分割算法[J]. 宁夏大学学报(自然科学版), 2019, 40(3):246-254.
|
|
LIU C X, LIU D M, YANG F, et al. Partitioning algorithm for rice pest based on improved level set method[J]. J Ningxia Univ (Nat Sci Ed), 2019, 40(3):246-254.DOI:10.3969/j.issn.0253-2328.2019.03.010.
|
[37] |
卜俊怡, 孙国祥, 王迎旭, 等. 基于诱虫板图像的温室番茄作物害虫识别与监测方法[J]. 南京农业大学学报, 2021, 44(2):373-383.
|
|
BU J Y, SUN G X, WANG Y X, et al. Identification and monitoring method of tomato crop pests in greenhouse based on trapping board image[J]. J Nanjing Agric Univ, 2021, 44(2):373-383.DOI:10.7685/jnau.202005031.
|