南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (5): 1-8.doi: 10.12302/j.issn.1000-2006.202212004
收稿日期:
2022-12-01
修回日期:
2023-01-29
出版日期:
2023-09-30
发布日期:
2023-10-10
作者简介:
杨甲定(基金资助:
YANG Jiading1(), LIU Yujie1, FENG Jianyuan1,2, ZHANG Yuanlan1
Received:
2022-12-01
Revised:
2023-01-29
Online:
2023-09-30
Published:
2023-10-10
摘要:
施加氮肥是保证人工农林生产的重要手段,但也带来生产成本增加和土壤、水体、大气污染等问题。提高植物的氮素利用效率是解决这一问题的关键途径。氮素利用效率是一个涉及遗传因素和环境因素互作的复杂性状,是植物根系对土壤氮素的吸收、植株对所吸收氮素的同化与利用、衰老组织/器官中氮素的再吸收等多方面效率的综合表现。氮素再吸收的步骤包括衰老源器官中蛋白质的降解、氨基酸转变以及韧皮部装载等环节,韧皮部装载被认为是衰老叶片氮素再吸收的限速环节。氮素再吸收通常与由发育年龄引发的整体植株或特定组织/器官的自然衰老或因环境胁迫诱导的提前衰老相偶联。再吸收衰老叶片中的氮素是多年生树木保守体内氮素、增强越冬抗胁迫能力的重要策略,其效率不仅与树种、树木年龄、树种功能类型(落叶或常绿、阔叶或针叶)等有关,也受生长环境、土壤氮素水平、水分供应等环境因子的影响。提高树木衰老叶片的氮素再吸收效率可降低树木下一季生长对外源氮肥的需求。由于有关树木叶片衰老和氮素再吸收机理的研究有限,未来应着重对调控树木叶片衰老的关键因子(如NAC、WRKY家族成员)、负责氨基酸向衰老叶片韧皮部装载的特定转运蛋白成员和介导脱落酸及乙烯等植物激素促进叶片衰老功能的信号元件进行鉴定,以此为通过遗传改良培育具有较高氮素利用效率的树木新品种提供可能的技术支持。
中图分类号:
杨甲定,刘雨节,冯建元,等. 树木叶片衰老中的氮素再吸收机制研究进展[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 1-8.
YANG Jiading, LIU Yujie, FENG Jianyuan, ZHANG Yuanlan. Nitrogen resorption machanism during leaf senescence in woody plants[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(5): 1-8.DOI: 10.12302/j.issn.1000-2006.202212004.
[1] | 蒋志敏, 王威, 储成才. 植物氮高效利用研究进展和展望[J]. 生命科学, 2018, 30(10):1060-1071. |
JIANG Z M, WANG W, CHU C C. Towards understanding of nitrogen use efficiency in plants[J]. Chin Bull Life Sci, 2018, 30(10):1060-1071.DOI: 10.13376/j.cbls/2018128. | |
[2] |
YANG J D, UDVARDI M. Senescence and nitrogen use efficiency in perennial grasses for forage and biofuel production[J]. J Exp Bot, 2018, 69(4):855-865.DOI: 10.1093/jxb/erx241.
pmid: 29444307 |
[3] | CASSMAN K G, DOBERMANN A. Nitrogen and the future of agriculture:20 years on[J]. Ambio, 2022, 51(1):17-24.DOI: 10.1007/s13280-021-01526-w. |
[4] |
XU G H, FAN X R, MILLER A J. Plant nitrogen assimilation and use efficiency[J]. Annu Rev Plant Biol, 2012, 63:153-182.DOI: 10.1146/annurev-arplant-042811-105532.
pmid: 22224450 |
[5] | 武姣娜, 魏晓东, 李霞, 等. 植物氮素利用效率的研究进展[J]. 植物生理学报, 2018, 54(9):1401-1408. |
WU J N, WEI X D, LI X, et al. Research progress in nitrogen use efficiency in plants[J]. Plant Physiol J, 2018, 54(9):1401-1408.DOI: 10.13592/j.cnki.ppj.2018.0071. | |
[6] | WANG Y Y, HSU P K, TSAY Y F. Uptake,allocation and signaling of nitrate[J]. Trends Plant Sci, 2012, 17(8):458-467.DOI: 10.1016/j.tplants.2012.04.006. |
[7] | MORAN-ZULOAGA D, DIPPOLD M, GLASER B, et al. Organic nitrogen uptake by plants:reevaluation by position-specific labeling of amino acids[J]. Biogeochemistry, 2015, 125(3):359-374.DOI: 10.1007/s10533-015-0130-3. |
[8] | LIU Y Y, WU L H, BADDELEY J A, et al. Models of biological nitrogen fixation of legumes: a review[J]. Agronomy Sust Developm, 2011, 31(1):155-172.DOI: 10.1051/agro/2010008. |
[9] | FAN X R, NAZ M, FAN X R, et al. Plant nitrate transporters:from gene function to application[J]. J Exp Bot, 2017, 68(10):2463-2475.DOI: 10.1093/jxb/erx011. |
[10] | 张合琼, 张汉马, 梁永书, 等. 植物硝酸盐转运蛋白研究进展[J]. 植物生理学报, 2016, 52(2):141-149. |
ZHANG H Q, ZHANG H M, LIANG Y S, et al. Research progress of nitrate in plant transport mechanism[J]. Plant Physiol J, 2016, 52(2):141-149.DOI: 10.13592/j.cnki.ppj.2015.0621. | |
[11] | LIU K H, TSAY Y F. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation[J]. EMBO J, 2003, 22(5):1005-1013.DOI: 10.1093/emboj/cdg118. |
[12] | SOHLENKAMP C, WOOD C C, ROEB G W, et al. Characterization of Arabidopsis AtAMT2,a high-affinity ammonium transporter of the plasma membrane[J]. Plant Physiol, 2002, 130(4):1788-1796.DOI: 10.1104/pp.008599. |
[13] | YUAN L X, LOQUÉ D, KOJIMA S, et al. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters[J]. Plant Cell, 2007, 19(8):2636-2652.DOI: 10.1105/tpc.107.052134. |
[14] | YAO X, NIE J, BAI R, et al. Amino acid transporters in plants: identification and function[J]. Plants, 2020, 9(8): 972. DOI:https://www.mdpi.com/2223-7747/9/8/972. |
[15] |
TEGEDER M, MASCLAUX-DAUBRESSE C. Source and sink mechanisms of nitrogen transport and use[J]. New Phytol, 2018, 217(1):35-53.DOI: 10.1111/nph.14876.
pmid: 29120059 |
[16] | GARNETT T, CONN V, KAISER B N. Root based approaches to improving nitrogen use efficiency in plants[J]. Plant Cell Environ, 2009, 32(9):1272-1283.DOI: 10.1111/j.1365-3040.2009.02011.x. |
[17] | MASCLAUX-DAUBRESSE C, DANIEL-VEDELE F, DECHORGNAT J, et al. Nitrogen uptake,assimilation and remobilization in plants:challenges for sustainable and productive agriculture[J]. Ann Bot, 2010, 105(7):1141-1157.DOI: 10.1093/aob/mcq028. |
[18] | 刘利, 李秀杰, 韩真, 等. 植物中氮素感知和信号的研究进展[J]. 植物生理学报, 2018, 54(10):1535-1545. |
LIU L, LI X J, HAN Z, et al. Advances in nitrogen nutrition sensing and signaling in plants[J]. Plant Physiol J, 2018, 54(10):1535-1545.DOI: 10.13592/j.cnki.ppj.2018.0008. | |
[19] | HAVÉ M, MARMAGNE A, CHARDON F, et al. Nitrogen remobilization during leaf senescence:lessons from Arabidopsis to crops[J]. J Exp Bot, 2017, 68(10):2513-2529.DOI: 10.1093/jxb/erw365. |
[20] | YANG G Z, WEI Q X, HUANG H, et al. Amino acid transporters in plant cells:a brief review[J]. Plants, 2020, 9(8):967.DOI: 10.3390/plants9080967. |
[21] | TEGEDER M, HAMMES U Z. The way out and in:phloem loading and unloading of amino acids[J]. Curr Opin Plant Biol, 2018, 43:16-21.DOI: 10.1016/j.pbi.2017.12.002. |
[22] |
ZHAO Y, CHAN Z L, GAO J H, et al. ABA receptor PYL9 promotes drought resistance and leaf senescence[J]. Proc Natl Acad Sci USA, 2016, 113(7):1949-1954.DOI: 10.1073/pnas.1522840113.
pmid: 26831097 |
[23] | WOO H R, KIM H J, LIM P O, et al. Leaf senescence:systems and dynamics aspects[J]. Annu Rev Plant Biol, 2019, 70:347-376.DOI: 10.1146/annurev-arplant-050718-095859. |
[24] | 王厚领, 张易, 夏新莉, 等. 木本植物叶片衰老研究进展[J]. 中国科学:生命科学, 2020, 50(2):196-206. |
WANG H L, ZHANG Y, XIA X L, et al. Research advances in leaf senescence of woody plants[J]. Sci Sin (Vitae), 2020, 50(2):196-206.DOI: 10.1360/SSV-2019-0192. | |
[25] | ARCHETTI M, DÖRING T F, HAGEN S B, et al. Unravelling the evolution of autumn colours:an interdisciplinary approach[J]. Trends Ecol Evol, 2009, 24(3):166-173.DOI: 10.1016/j.tree.2008.10.006. |
[26] | BARRACLOUGH P B, HOWARTH J R, JONES J, et al. Nitrogen efficiency of wheat:genotypic and environmental variation and prospects for improvement[J]. Eur J Agron, 2010, 33(1):1-11.DOI: 10.1016/j.eja.2010.01.005. |
[27] |
LIANG C Z, WANG Y Q, ZHU Y N, et al. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice[J]. Proc Natl Acad Sci USA, 2014, 111(27):10013-10018.DOI: 10.1073/pnas.1321568111.
pmid: 24951508 |
[28] |
GUO Y F, GAN S S. Translational researches on leaf senescence for enhancing plant productivity and quality[J]. J Exp Bot, 2014, 65(14):3901-3913.DOI: 10.1093/jxb/eru248.
pmid: 24935620 |
[29] | 周丽丽, 郑焰英, 李树斌, 等. 不同红树植物叶片元素重吸收特征[J]. 西北林学院学报, 2022, 37(3):51-56,119. |
ZHOU L L, ZHENG Y Y, LI S B, et al. Leaf nutrient resorption characteristics among mangrove tree species[J]. J Northwest For Univ, 2022, 37(3):51-56,119.DOI: 10.3969/j.issn.1001-7461.2022.03.08. | |
[30] | CHÁVEZ-VERGARA B M, GONZÁLEZ-RODRÍGUEZ A, ETCHEVERS J D, et al. Foliar nutrient resorption constrains soil nutrient transformations under two native oak species in a temperate deciduous forest in Mexico[J]. Eur J Forest Res, 2015, 134(5):803-817.DOI: 10.1007/s10342-015-0891-1. |
[31] | 邓浩俊, 陈爱民, 严思维, 等. 不同林龄新银合欢重吸收率及其C∶N∶P化学计量特征[J]. 应用与环境生物学报, 2015, 21(3):522-527. |
DENG H J, CHEN A M, YAN S W, et al. Nutrient resorption efficiency and C∶N∶P stoichiometry in different ages of Leucaena leucocephala[J]. Chin J Appl Environ Biol, 2015, 21(3):522-527.DOI: 10.3724/sp.j.1145.2014.11032. | |
[32] | 邱岭军, 胡欢甜, 林宇, 等. 滨海沙地不同林龄尾巨桉内吸收率及其C∶N∶P化学计量特征[J]. 应用与环境生物学报, 2017, 23(4):739-744. |
QIU L J, HU H T, LIN Y, et al. Nutrient resorption efficiency and C∶N∶P stoichiometry of Eucalyptus urophylla × E.grandis of different ages in a sandy coastal plain area[J]. Chin J Appl Environ Biol, 2017, 23(4):739-744. | |
[33] | 刘宏伟, 刘文丹, 王微, 等. 重庆石灰岩地区主要木本植物叶片性状及养分再吸收特征[J]. 生态学报, 2015, 35(12):4071-4080. |
LIU H W, LIU W D, WANG W, et al. Leaf traits and nutrient resorption of major woody species in the Karst limestone area of Chongqing[J]. Acta Ecol Sin, 2015, 35(12):4071-4080.DOI: 10.5846/stxb201310262584. | |
[34] |
赵勇, 吴明作, 樊巍, 等. 太行山针、阔叶森林凋落物分解及养分归还比较[J]. 自然资源学报, 2009, 24(9):1616-1624.
doi: 10.11849/zrzyxb.2009.09.011 |
ZHAO Y, WU M Z, FAN W, et al. Comparison of nutrient return and litter decomposition between coniferous and broad-leaved forests in hilly region of Taihang Mountains[J]. J Nat Resour, 2009, 24(9):1616-1624.DOI: 10.11849/zrzyxb.2009.09.011. | |
[35] | YAN T, ZHU J J, SONG H H, et al. Resorption-related nitrogen changes in the leaves and roots of Larix kaempferi seedlings under nutrient-sufficient and nutrient-starvation conditions[J]. J Plant Ecol, 2019, 12(4):615-623.DOI: 10.1093/jpe/rty056. |
[36] | 王佳茜, 李国雷, 孙龙, 等. 木本植物氮素内循环研究综述[J]. 世界林业研究, 2014, 27(4):24-29. |
WANG J X, LI G L, SUN L, et al. Review on internal cycling of nitrogen in woody plants[J]. World For Res, 2014, 27(4):24-29.DOI: 10.13348/j.cnki.sjlyyj.2014.04.005. | |
[37] | YUAN Z Y, CHEN H Y H. Global-scale patterns of nutrient resorption associated with latitude,temperature and precipitation[J]. Glob Ecol Biogeogr, 2009, 18(1):11-18.DOI: 10.1111/j.1466-8238.2008.00425.x. |
[38] | MILLARD P, GRELET G A. Nitrogen storage and remobilization by trees:ecophysiological relevance in a changing world[J]. Tree Physiol, 2010, 30(9):1083-1095.DOI: 10.1093/treephys/tpq042. |
[39] |
MILLARD P, WENDLER R, GRASSI G, et al. Translocation of nitrogen in the xylem of field-grown cherry and poplar trees during remobilization[J]. Tree Physiol, 2006, 26(4):527-536.DOI: 10.1093/treephys/26.4.527.
pmid: 16414931 |
[40] | MILLARD P, HESTER A, WENDLER R, et al. Interspecific defoliation responses of trees depend on sites of winter nitrogen storage[J]. Funct Ecol, 2001, 15(4):535-543.DOI: 10.1046/j.0269-8463.2001.00541.x. |
[41] |
田歌, 王芬, 徐新翔, 等. 富士苹果幼树生长与氮素积累和利用动态[J]. 应用生态学报, 2018, 29(10):3319-3325.
doi: 10.13287/j.1001-9332.201810.024 |
TIAN G, WANG F, XU X X, et al. Dynamics of growth and nitrogen accumulation and utilization of young apple trees[J]. Chin J Appl Ecol, 2018, 29(10):3319-3325.DOI: 10.13287/j.1001-9332.201810.024. | |
[42] | 张永发, 吴小平, 王文斌, 等. 不同氮水平下橡胶树氮素贮藏及翌年分配利用特性[J]. 热带作物学报, 2019, 40(12):2313-2320. |
ZHANG Y F, WU X P, WANG W B, et al. Effects of different N rates on storage and remobilization of urea-15N by rubber tree[J]. Chin J Trop Crops, 2019, 40(12):2313-2320.DOI: 10.3969/j.issn.1000-2561.2019.12.001. | |
[43] | WOO H R, KIM H J, NAM H G, et al. Plant leaf senescence and death-regulation by multiple layers of control and implications for aging in general[J]. Journal of Cell Science, 2013, 126(21): 4823-4833. DOI: 10.1242/jcs.109116. |
[44] | CAO J, ZHANG Y, TAN S Y, et al. LSD 4.0:an improved database for comparative studies of leaf senescence[J]. Mol Hortic, 2022, 2(1):1-4.DOI: 10.1186/s43897-022-00045-w. |
[45] |
SCHIPPERS J H M. Transcriptional networks in leaf senescence[J]. Curr Opin Plant Biol, 2015, 27:77-83.DOI: 10.1016/j.pbi.2015.06.018.
pmid: 26190740 |
[46] | KIM J, WOO H R, NAM H G. Toward systems understanding of leaf senescence:an integrated multi-omics perspective on leaf senescence research[J]. Mol Plant, 2016, 9(6):813-825.DOI: 10.1016/j.molp.2016.04.017. |
[47] | LIM P O, KIM H J, NAM H G. Leaf Senescence[J]. Annual Review of Plant Biology, 2007, 58(1): 115-136. DOI: 10.1146/annurev.arplant.57.032905.105316. |
[48] |
BHALERAO R, KESKITALO J, STERKY F, et al. Gene expression in autumn leaves[J]. Plant Physiology, 2003, 131(2): 430-442. DOI: 10.1104/pp.012732.
pmid: 12586868 |
[49] |
ANDERSSON A, KESKITALO J, SJöDIN A, et al. A transcriptional timetable of autumn senescence[J]. Genome Biology, 2004, 5(4): R24. DOI: 10.1186/gb-2004-5-4-r24.
pmid: 15059257 |
[50] | WEN C H, LIN S S, CHU F H. Transcriptome analysis of a subtropical deciduous tree: autumn leaf senescence gene expression profile of Formosan gum[J]. Plant Cell Physiol, 2015, 56(1): 163-174. DOI: 10.1093/pcp/pcu160. |
[51] | GUO P R, LI Z H, HUANG P X, et al. A tripartite amplification loop involving the transcription factor WRKY75,salicylic acid,and reactive oxygen species accelerates leaf senescence[J]. Plant Cell, 2017, 29(11):2854-2870.DOI: 10.1105/tpc.17.00438. |
[52] | LI Z H, ZHANG Y, ZOU D, et al. LSD 3.0:a comprehensive resource for the leaf senescence research community[J]. Nucleic Acids Res, 2020, 48(D1):1069-1075.DOI: 10.1093/nar/gkz898. |
[53] | WANG H L, ZHANG Y, WANG T, et al. An alternative splicing variant of PtRD26 delays leaf senescence by regulating multiple NAC transcription factors in Populus[J]. Plant Cell, 2021, 33(5):1594-1614.DOI: 10.1093/plcell/koab046. |
[54] | GUO Y F, GAN S S. AtNAP,a NAC family transcription factor,has an important role in leaf senescence[J]. Plant J, 2006, 46(4):601-612.DOI: 10.1111/j.1365-313X.2006.02723.x. |
[55] |
UAUY C, DISTELFELD A, FAHIMA T, et al. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat[J]. Science, 2006, 314(5803): 1298-1301. DOI:10.1126/science1133649.
pmid: 17124321 |
[56] |
TANG W J, YE J, YAO X M, et al. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice[J]. Nat Commun, 2019, 10(1):5279.DOI: 10.1038/s41467-019-13187-1.
pmid: 31754193 |
[57] |
XIE Z N, YU G H, LEI S S, et al. STRONG STAYGREEN inhibits DNA binding of PvNAP transcription factors during leaf senescence in switchgrass[J]. Plant Physiol, 2022, 190(3):2045-2058.DOI: 10.1093/plphys/kiac397.
pmid: 36005925 |
[58] | SARWAT M, NAQVI A R, AHMAD P, et al. Phytohormones and microRNAs as sensors and regulators of leaf senescence:assigning macro roles to small molecules[J]. Biotechnol Adv, 2013, 31(8):1153-1171.DOI: 10.1016/j.biotechadv.2013.02.003. |
[1] | 李喜梅, 赵君静, 回祎, 黄鑫, 高春雨, 牛雅璇, 廖晓宇, 于晨一. 郑州市4种园林树木光合特性及其影响因素研究[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 105-112. |
[2] | 方炎明. 郑万钧先生与树木学[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 2-13. |
[3] | 黎明慧, 李远发. 径阶距对评估南盘江流域天然林物种多样性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 166-174. |
[4] | 杨永, 杨智, 段一凡, 方炎明. 标本组学——树木学研究的新方法[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 1-6. |
[5] | 李雪楠, 霍嘉新, 杨柳, 彭剑峰. 木札岭华山松树轮宽度年表的建立及其气候响应[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 157-162. |
[6] | 向民,段一凡,向其柏. 巨紫荆Cercis gigantea Cheng et Keng f.名称考证及其分类处理[J]. 南京林业大学学报(自然科学版), 2018, 42(03): 204-206. |
[7] | 张冬,云挺,薛联凤,阮宏华. 基于力场的点云树木骨架提取方法[J]. 南京林业大学学报(自然科学版), 2016, 40(02): 160-166. |
[8] | 胡春华,李萍萍. 树木三维可视化建模技术研究述评[J]. 南京林业大学学报(自然科学版), 2015, 39(06): 148-154. |
[9] | 熊福全,周亮,刘盛全,钱良存,王祝兵,赵磊. 液氮研磨对桉树木粉颗粒结构的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(06): 125-129. |
[10] | 孙慧珍,高禾,蔡春菊,祝宁. 哈尔滨市4种阔叶树树干重金属含量动态变化及富集特征[J]. 南京林业大学学报(自然科学版), 2013, 37(06): 64-68. |
[11] | 吴红,韩大勇,张衡锋,汤庚国. 沼液施用量对园林树木生长和土壤养分含量影响[J]. 南京林业大学学报(自然科学版), 2013, 37(03): 77-81. |
[12] | 谢寅峰1,林候2,张千千1,张春霞1. 鹅毛竹花后叶片衰老生理特性[J]. 南京林业大学学报(自然科学版), 2009, 33(06): 39-. |
[13] | 商庆清1,赵博光2,张沂泉1. 高压大容量树木注干机的研制[J]. 南京林业大学学报(自然科学版), 2009, 33(05): 101-. |
[14] | 童雀菊1,张述垠2. 抚育间伐对北美短叶松的生长及材质的影响[J]. 南京林业大学学报(自然科学版), 2005, 29(06): 73-76. |
[15] | B.Satyanarayana;A.V.Raman;张秀英;冯学智;F.Dehairs. 应用GIS制作Coringa红树林物种分布图[J]. 南京林业大学学报(自然科学版), 2004, 28(04): 13-18. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||