[1] |
何友铸, 张振乾, 官春云. 高光谱遥感技术在精细农业监测上的应用及展望[J]. 作物研究, 2015, 29(1):96-100.
|
|
HE Y Z, ZHANG Z Q, GUAN C Y. Application and prospect of hyperspectral remote sensing technology in precision agriculture monitoring[J]. Crop Res, 2015, 29(1):96-100..DOI: 10.3969/j.issn.1001-5280.2015.01.23.
|
[2] |
GOWER S T, KUCHARIK C J, NORMAN J M. Direct and indirect estimation of leaf area index,fAPAR,and net primary production of terrestrial ecosystems[J]. Remote Sens Environ, 1999, 70(1):29-51.DOI: 10.1016/S0034-4257(99)00056-5.
|
[3] |
BRÉDA N J J. Ground-based measurements of leaf area index:a review of methods,instruments and current controversies[J]. J Exp Bot, 2003, 54(392):2403-2417.DOI: 10.1093/jxb/erg263.
|
[4] |
MAJASALMI T, RAUTIAINEN M, STENBERG P, et al. An assessment of ground reference methods for estimating LAI of boreal forests[J]. For Ecol Manag, 2013, 292:10-18.DOI: 10.1016/j.foreco.2012.12.017.
|
[5] |
MONTEITH J L, ROSS J. The radiation regime and architecture of plant stands[J]. J Ecol, 1983, 71(1):344.DOI: 10.2307/2259995.
|
[6] |
MACFARLANE C, RYU Y, OGDEN G N, et al. Digital canopy photography:exposed and in the raw[J]. Agric For Meteorol, 2014, 197:244-253.DOI: 10.1016/j.agrformet.2014.05.014.
|
[7] |
RYU Y, SONNENTAG O, NILSON T, et al. How to quantify tree leaf area index in an open savanna ecosystem: a multi-instrument and multi-model approach[J]. Agricultural and Forest Meteorology. 2010; 150(1):63-76.
doi: 10.1016/j.agrformet.2009.08.007
|
[8] |
吴彤, 倪绍祥, 李云梅, 等. 由冠层孔隙度反演植被叶面积指数的算法比较[J]. 南京师大学报(自然科学版), 2006, 29(1):111-115.
|
|
WU T, NI S X, LI Y M, et al. A comparison on the algorithms for retrieval of LAI based on gap frictions of vegetation canopy[J]. J Nanjing Norm Univ (Nat Sci), 2006, 29(1):111-115.DOI: 10.3969/j.issn.1001-4616.2006.01.026.
|
[9] |
FRANCONE C, PAGANI V, FOI M, et al. Comparison of leaf area index estimates by ceptometer and PocketLAI smart app in canopies with different structures[J]. Field Crops Res, 2014, 155:38-41.DOI: 10.1016/j.fcr.2013.09.024.
|
[10] |
CHEN J M, CIHLAR J. Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods[J]. IEEE Trans Geosci Remote Sens, 1995, 33(3):777-787.DOI: 10.1109/36.387593.
|
[11] |
DANSON F M, GAULTON R, ARMITAGE R P, et al. Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure[J]. Agric For Meteorol, 2014, 198/199:7-14.DOI: 10.1016/j.agrformet.2014.07.007.
|
[12] |
LOVELL J L, JUPP D L B, NEWNHAM G J, et al. Measuring tree stem diameters using intensity profiles from ground-based scanning lidar from a fixed viewpoint[J]. ISPRS J Photogramm Remote Sens, 2011, 66(1):46-55.DOI: 10.1016/j.isprsjprs.2010.08.006.
|
[13] |
SRINIVASAN S, POPESCU S, ERIKSSON M, et al. Terrestrial laser scanning as an effective tool to retrieve tree level height,crown width,and stem diameter[J]. Remote Sens, 2015, 7(2):1877-1896.DOI: 10.3390/rs70201877.
|
[14] |
JUPP D L B, CULVENOR D S, LOVELL J L, et al. Estimating forest LAI profiles and structural parameters using a ground-based laser called ‘Echidna’[J]. Tree Physiol, 2009, 29(2):171-181.DOI: 10.1093/treephys/tpn022.
|
[15] |
HOPKINSON C, CHASMER L, YOUNG-POW C, et al. Assessing forest metrics with a ground-based scanning lidar[J]. Can J For Res, 2004, 34(3):573-583.DOI: 10.1139/x03-225.
|
[16] |
CALDERS K, ADAMS J, ARMSTON J, et al. Terrestrial laser scanning in forest ecology:expanding the horizon[J]. Remote Sens Environ, 2020, 251:112102.DOI: 10.1016/j.rse.2020.112102.
|
[17] |
DETTO M, ASNER G P, MULLER-LANDAU H C, et al. Spatial variability in tropical forest leaf area density from multireturn lidar and modeling[J]. J Geophys Res Biogeosci, 2015, 120(2):294-309.DOI: 10.1002/2014jg002774.
|
[18] |
OSHIO H, ASAWA T, HOYANO A, et al. Estimation of the leaf area density distribution of individual trees using high-resolution and multi-return airborne LiDAR data[J]. Remote Sens Environ, 2015, 166:116-125.DOI: 10.1016/j.rse.2015.05.001.
|
[19] |
HOSOI F, OMASA K. Voxel-based 3-D modeling of individual trees for estimating leaf area density using high-resolution portable scanning lidar[J]. IEEE Trans Geosci Remote Sensing, 2006, 44(12):3610-3618.DOI: 10.1109/tgrs.2006.881743.
|
[20] |
GRAU E, DURRIEU S, FOURNIER R, et al. Estimation of 3D vegetation density with Terrestrial Laser Scanning data using voxels: a sensitivity analysis of influencing parameters[J]. Remote Sens Environ, 2017, 191:373-388.DOI: 10.1016/j.rse.2017.01.032.
|
[21] |
BÉLAND M, WIDLOWSKI J L, FOURNIER R A. A model for deriving voxel-level tree leaf area density estimates from ground-based LiDAR[J]. Environ Model Softw, 2014, 51:184-189.
doi: 10.1016/j.envsoft.2013.09.034
|
[22] |
谷趁趁, 翟长远, 陈立平, 等. 基于激光雷达的树形靶标冠层叶面积探测模型研究[J]. 农业机械学报, 2021, 52(11)278-286.
|
|
GU C C, ZHAI C Y, CHEN L P, et al. Detection model of tree canopy leaf area based on LiDAR technology[J]. Trans Chin Soc Agric Mach, 2021, 52(11)278-286.DOI: 10.6041/j.issn.1000-1298.2021.11.030.
|
[23] |
张美娜, 吕晓兰, 邱威, 等. 基于三维激光点云的靶标叶面积密度计算方法[J]. 农业机械学报, 2017, 48(11)172-178
|
|
ZHANG M N, LYU X L, QIU W, et al. Calculation method of leaf area density based on three-dimensional laser point cloud[J]. Trans Chin Soc Agric Mach, 2017, 48(11)172-178.DOI: 10.6041/j.issn.1000-1298.2017.11.021.
|
[24] |
周梦维, 柳钦火, 刘强, 等. 机载激光雷达的作物叶面积指数定量反演[J]. 农业工程学报, 2011, 27(4):207-213.
|
|
ZHOU M W, LIU Q H, LIU Q, et al. Inversion of leaf area index based on small-footprint waveform airborne LIDAR[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(4): 207-213.
|
[25] |
巴比尔江·迪力夏提, 玉米提·哈力克, 艾萨迪拉·玉苏甫, 等. 应用地基激光雷达数据估算塔里木河下游胡杨叶面积指数[J]. 东北林业大学学报, 2020, 48(11):46-50.DOI:10.13759/j.cnki.dlxb.2020.11.008.
|
|
Babierjiang Dilixiati, Umut Halike, AIisadila Yusupu, et al. Estimation of leaf area index of Populus euphratica in the lower reaches of Tarim River with terrestrial laser scanning[J]. Journal of Northeast Forestry University, 2020 (11):46-50.DOI:10.13759/j.cnki.dlxb.2020.11.008.
|
[26] |
HU R H, BOURNEZ E, CHENG S Y, et al. Estimating the leaf area of an individual tree in urban areas using terrestrial laser scanner and path length distribution model[J]. ISPRS J Photogramm Remote Sens, 2018, 144:357-368.DOI: 10.1016/j.isprsjprs.2018.07.015.
|
[27] |
ANGULO V, RODRIGUEZ J, GAONA E, et al. A super voxel-based approach for leaves segmentation of potato plants from point clouds[C]// IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium.September 26-October 2,2020.Waikoloa,HI,USA:IEEE, 2020.DOI: 10.1109/igarss39084.2020.9324365.
|
[28] |
ITAKURA K, HOSOI F. Automatic leaf segmentation for estimating leaf area and leaf inclination angle in 3D plant images[J]. Sensors (Basel), 2018, 18(10):3576.DOI: 10.3390/s18103576.
|
[29] |
LI D W, CAO Y, SHI G L, et al. An overlapping-free leaf segmentation method for plant point clouds[J]. IEEE Access, 2019, 7:129054-129070.DOI: 10.1109/access.2019.2940385.
|
[30] |
BEARDSLEY P, CHAURASIA G. Editable parametric dense foliage from 3D capture[C]// 2017 IEEE International Conference on Computer Vision (ICCV).October 22-29,2017. Venice: IEEE, 2017:5315-24.DOI: 10.1109/iccv.2017.567.
|
[31] |
SHI W N, VAN DE ZEDDE R, JIANG H Y, et al. Plant-part segmentation using deep learning and multi-view vision[J]. Biosyst Eng, 2019, 187:81-95.DOI: 10.1016/j.biosystemseng.2019.08.014.
|
[32] |
HAN B B, LI Y Q, BIE Z L, et al. MIX-NET:Deep learning-based point cloud processing method for segmentation and occlusion leaf restoration of seedlings[J]. Plants, 2022, 11(23):3342.DOI: 10.3390/plants11233342.
|
[33] |
WANG L, ZHENG L, WANG M. 3D Point cloud instance segmentation of lettuce based on PartNet[R]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)2022.
|
[34] |
LI D W, SHI G L, LI J S, et al. PlantNet:a dual-function point cloud segmentation network for multiple plant species[J]. ISPRS J Photogramm Remote Sens, 2022, 184:243-263.DOI: 10.1016/j.isprsjprs.2022.01.007
|
[35] |
YUN T, AN F, LI W Z, et al. A novel approach for retrieving tree leaf area from ground-based LiDAR[J]. Remote Sens, 2016, 8(11):942.DOI: 10.3390/rs8110942.
|
[36] |
BAILEY B N, MAHAFFEE W F. Rapid measurement of the three-dimensional distribution of leaf orientation and the leaf angle probability density function using terrestrial LiDAR scanning[J]. Remote Sens Environ, 2017, 194:63-76.DOI: 10.1016/j.rse.2017.03.011.
|
[37] |
XU Q F, CAO L, XUE L F, et al. Extraction of leaf biophysical attributes based on a computer graphic-based algorithm using terrestrial laser scanning data[J]. Remote Sens, 2018, 11(1):15.DOI: 10.3390/rs11010015.
|