[1] |
金小军, 张军, 杨凡, 等. 城市行道树生长健康状况与种植形式的相关性分析[J]. 城市建筑, 2021, 18(34):188-192.
|
|
JIN X J, ZHANG J, YANG F, et al. Correlation analysis between the growth and health of urban street trees and their planting forms[J]. Urban Archit, 2021, 18(34):188-192.DOI: 10.19892/j.cnki.csjz.2021.34.42.
|
[2] |
MORADPOUR M, AFSHIN H, FARHANIEH B. A numerical investigation of reactive air pollutant dispersion in urban street canyons with tree planting[J]. Atmos Pollut Res, 2017, 8(2):253-266.DOI: 10.1016/j.apr.2016.09.002.
|
[3] |
商艳上, 苏田, 李臻, 等. 园林行道树复壮技术[J]. 现代农业科技, 2021(12):176-177.
|
|
SHANG Y S, SU T, LI Z, et al. Rejuvenation technology of garden street trees[J]. Mod Agric Sci Technol, 2021(12):176-177.DOI: 10.3969/j.issn.1007-5739.2021.12.071.
|
[4] |
许秋颖. 城市行道树种植存在的问题及其养护管理措施[J]. 现代园艺, 2019(22):180-181.
|
|
XU Q Y. Problems existing in urban street tree planting and its maintenance and management measures[J]. Xiandai Hortic, 2019(22):180-181.DOI: 10.14051/j.cnki.xdyy.2019.22.116.
|
[5] |
刘智能, 张红锋, 徐瑾. 西藏行道树资源调查与结构特征分析[J]. 四川大学学报(自然科学版), 2019, 56(1):173-181.
|
|
LIU Z N, ZHANG H F, XU J. Survey and structural characteristics analysis of street trees in Tibet[J]. J Sichuan Univ (Nat Sci Ed), 2019, 56(1):173-181.DOI: 10.3969/j.issn.0490-6756.2019.01.030.
|
[6] |
ROSELL J R, SANZ R. A review of methods and applications of the geometric characterization of tree crops in agricultural activities[J]. Comput Electron Agric, 2012, 81:124-141.DOI: 10.1016/j.compag.2011.09.007.
|
[7] |
郝红科. 基于机载激光雷达的森林参数反演研究[D]. 杨凌: 西北农林科技大学, 2019.
|
|
HAO H K. Inversion of forest parameters using airborne LiDAR[D]. Yangling: Northwest A & F University, 2019.DOI: 10.27409/d.cnki.gxbnu.2019.000118.
|
[8] |
ZHEN Z, QUACKENBUSH L, ZHANG L J. Trends in automatic individual tree crown detection and delineation: evolution of LiDAR data[J]. Remote Sens, 2016, 8(4):333.DOI: 10.3390/rs8040333.
|
[9] |
MARSELIS S M, ABERNETHY K, ALONSO A, et al. Evaluating the potential of full-waveform lidar for mapping pan-tropical tree species richness[J]. Global Ecol Biogeogr, 2020, 29(10):1799-1816.DOI: 10.1111/geb.13158.
|
[10] |
JASKIERNIAK D, LUCIEER A, KUCZERA G, et al. Individual tree detection and crown delineation from unmanned aircraft system (UAS) LiDAR in structurally complex mixed species eucalypt forests[J]. ISPRS J Photogramm Remote Sens, 2021, 171:171-187.DOI: 10.1016/j.isprsjprs.2020.10.016.
|
[11] |
SAFAIE A H, RASTIVEIS H, SHAMS A, et al. Automated street tree inventory using mobile LiDAR point clouds based on hough transform and active contours[J]. ISPRS J Photogramm Remote Sens, 2021, 174:19-34.DOI: 10.1016/j.isprsjprs.2021.01.026.
|
[12] |
BIENERT A, GEORGI L, KUNZ M, et al. Automatic extraction and measurement of individual trees from mobile laser scanning point clouds of forests[J]. Ann Bot, 2021, 128(6):787-804.DOI: 10.1093/aob/mcab087.
|
[13] |
XU S, SUN X Y, YUN J Y, et al. A new clustering-based framework to the stem estimation and growth fitting of street trees from mobile laser scanning data[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 1978, 13:3240-3250.DOI: 10.1109/JSTARS.2020.3001978.
|
[14] |
LI J T, CHENG X J, XIAO Z H. A branch-trunk-constrained hierarchical clustering method for street trees individual extraction from mobile laser scanning point clouds[J]. Measurement, 2022,189:110440.DOI: 10.1016/j.measurement.2021.110440.
|
[15] |
LI J T, CHENG X J. Supervoxel-based extraction and classification of pole-like objects from MLS point cloud data[J]. Opt Laser Technol, 2022,146:107562.DOI: 10.1016/j.optlastec.2021.107562.
|
[16] |
HAO W, WANG Y H, LI Y, et al. Hierarchical extraction of pole-like objects from scene point clouds[J]. Opt Eng, 2018, 57(8):1.DOI: 10.1117/1.oe.57.8.083106.
|
[17] |
WANG W Y, YU R, HUANG Q G, et al. SGPN:similarity group proposal network for 3D point cloud instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA.IEEE, 2018:2569-2578.DOI: 10.1109/CVPR.2018.00272.
|
[18] |
PHAM Q H, NGUYEN T, HUA B S, et al. JSIS3D:joint semantic-instance segmentation of 3D point clouds with multi-task pointwise networks and multi-value conditional random fields[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach,CA,USA.IEEE, 2019:8819-8828.DOI: 10.1109/CVPR.2019.00903.
|
[19] |
CHEN S Y, FANG J M, ZHANG Q, et al. Hierarchical aggregation for 3D instance segmentation[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV).Montreal,QC,Canada. IEEE,2021:15447-15456.DOI: 10.1109/ICCV48922.2021.01518.
|
[20] |
WANG Y, YU Y, LIU M. PointIT: a fast tracking framework based on 3D instance segmentation[J]. Computer Vision and Pattern Recognition, 2019(37):102-110. DOI:10.1109/ICCAIS59597.2023.10382343.
|
[21] |
HUA Z Y, XU S, LIU Y G. Individual tree segmentation from side-view LiDAR point clouds of street trees using shadow-cut[J]. Remote Sens, 2022, 14(22):5742.DOI: 10.3390/rs14225742.
|
[22] |
WEINMANN M, WEINMANN M, MALLET C, et al. A classification-segmentation framework for the detection of individual trees in dense MMS point cloud data acquired in urban areas[J]. Remote Sens, 2017, 9(3):277.DOI: 10.3390/rs9030277.
|
[23] |
FUKUNAGA K, HOSTETLER L. The estimation of the gradient of a density function,with applications in pattern recognition[J]. IEEE Trans Inf Theory, 1975, 21(1):32-40.DOI: 10.1109/TIT.1975.1055330.
|
[24] |
ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]// Proceedings of the Second International Conference on Knowledge Discovery and Data Mining.August, 1996, Portland,Oregon.ACM,1996:226-231.DOI: 10.5555/3001460.3001507.
|
[25] |
于挺, 杨军. 基于K近邻卷积神经网络的点云模型识别与分类[J]. 激光与光电子学进展, 2020, 57(10):355-363.
|
|
YU T, YANG J. Point cloud model recognition and classification based on K-nearest neighbor convolutional neural network[J]. Laser Optoelectron Prog, 2020, 57(10):355-363.DOI: 10.3788/LOP57.101510.
|
[26] |
薛玉玺, 李秋洁. 基于移动激光扫描的行道树靶标实时检测[J]. 林业工程学报, 2023, 8(1):150-156.
|
|
XUE Y X, LI Q J. Real-time detection of street tree targets based on mobile laser scanning[J]. J For Eng, 2023, 8(1): 150-156. DOI: 10.13360/j.issn.2096-1359.202205039.
|
[27] |
DAGHISTANI T, ALSHAMMARI R. Comparison of statistical logistic regression and Random Forest machine learning techniques in predicting diabetes[J]. J Adv Inf Technol, 2020:78-83.DOI: 10.12720/jait.11.2.78-83.
|
[28] |
QI C R, LI Y, HAO S, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space: 10.48550/arXiv.1706.02413[P]. 2017. DOI:10.48550/arXiv.1706.02413.
|