南京林业大学学报(自然科学版) ›› 2010, Vol. 34 ›› Issue (01): 73-79.doi: 10.3969/j.jssn.1000-2006.2010.01.016

• 研究论文 • 上一篇    下一篇

面向对象森林分类的多分类器结合方法研究

李春干1,邵国凡2   

  1. 1.广西林业勘测设计院,广西南宁530011;2.美国Purdue大学林业和自然资源系,West Lafayette IN47906)
  • 出版日期:2010-02-09 发布日期:2010-02-09
  • 基金资助:
    收稿日期:2009-03-30修回日期:2009-10-26基金项目:国家自然科学基金项目(30872023)作者简介:李春干(1962—),研究员,博士。Email: gxali@126.com。引文格式:李春干,邵国凡. 面向对象森林分类的多分类器结合方法研究[J]. 南京林业大学学报:自然科学版,2010,34(1):73-79.

Combination multiclassifier for objectoriented classification of forest cover

LI Chungan1, SHAO Guofan2   

  1. 1.Guangxi Forest Inventory & Planning Institute, Nanning 530011, China; 2.Department of Forestry and Natural Resources,Purdue University, West Lafayette IN47906, USA
  • Online:2010-02-09 Published:2010-02-09

摘要: 为改善面向对象的SPOT5遥感图像森林分类精度,在多分类器结合的投票法、Bayesian平均法和模糊法的基础上提出综合保守投票法和模糊法的多分类器结合新方法——投票模糊法。对最小距离、马氏距离、Bayes准则、模糊逻辑和支持向量机5个分类器结合的试验检测结果表明:采用投票模糊进行分类器结合,总体分类精度和Kappa系数均比投票法、Bayesian法和模糊法的高,也略高于分类效果最好的单个分类器——Bayes分类器,且各类型间生产者精度的差异减小。但分类器结合效果不很明显,其主要原因可能是各分类器采用同一套训练样本,分类器输出结果之间存在较高的关联性,并且所分类型较多。因此,在实际应用中,应尽可能确保各个分类器训练样本的差异性,或者尽可能地避免每个分类器都采用相同的对象特征。

Abstract: Aimed toward improve the accuracy of objectoriented classification using SPOT5 imagery, three multiclassifier combination methods, include voting rule, Bayesian mean and fuzzy fusion rule, were discussed and a new fusion approach named votingfuzzy rule was developed, which synthesized conservative voting rule and fuzzy fusion rule. Five classifiers include minimums distance, Mahalanobis distance, Bayes rule, fuzzy logic and support vector machine, were involved in the combination. The result indicated that the votingfuzzy rule had higher total accuracy and Kappa index than three other combination rules, and also the Bayes rule, the best single classifier in all classifiers; furthermore, it reduced the difference of producer accuracy between classes. However, the combination effect wasn’t as obvious as indicated in literatures. The reason might owe to the high correlativity in the outputs of five classifiers, for them shared with a sample set, and the protocol with twenty two classes. Thus classifiers shouldn’t be trained with a same training sample set, or might select difference object features in practical application.

中图分类号: