南京林业大学学报(自然科学版) ›› 2010, Vol. 34 ›› Issue (03): 83-88.doi: 10.3969/j.jssn.1000-2006.2010.03.017
姚志刚,王中生*,颜超,董卓瑶,徐卫祥,魏娜,安树青
出版日期:
2010-06-29
发布日期:
2010-06-29
基金资助:
YAO Zhigang, WANG Zhongsheng*, YAN Chao, DONG Zhuoyao, XU Weixiang, WEI Na, AN Shuqing
Online:
2010-06-29
Published:
2010-06-29
摘要: 在不同光照强度处理下(100 %、50 %和5 %自然光强),测定了濒危植物银缕梅幼苗叶片光合生理及其相应的形态指标,以探讨银缕梅幼苗叶片光合功能执行及叶形态建成在不同光照条件下的响应趋势。结果表明:银缕梅幼苗最大净光合速率(Pn,max)、光饱和点(LSP)和光补偿点(LCP)随着光强下降而显著降低,表明当年生新叶在一定程度上能够利用低强度光。全光强下银缕梅幼苗虽然具有较高的净光合速率,但其非光化学猝灭系数(NPQ)同样显著高于弱光下的幼苗,表明在幼苗建成阶段其强光利用能力较低,需要通过增加热耗散以散发过剩的光能。50 %光强下的银缕梅幼苗叶片的比叶面积(SLA)显著高于5 %及100 %光强下幼苗叶片的SLA,并且单株产叶数显著增加,说明在中等遮荫条件下银缕梅幼苗可进行有效的光合功能执行,并在形态建成方面表现出积极的响应。5 %光强下银缕梅幼苗的SLA最低,但单位面积及单位干质量的叶绿素含量均显著高于50 %与全光照下幼苗的相应指标。银缕梅幼苗在光合功能执行以及叶形态建成等方面对低光环境所表现出的适应策略,较好地解释了自然种群中幼树(幼苗)个体占据绝对优势的现象。但作为典型的阳生性树种,生长后期的光资源限制则可能导致植株处于“光饥饿”的压制状态,严重限制其种群更新。光环境的改善将直接促使幼树(幼苗)从光制约状态释放出来,以利于银缕梅种群的顺利更新。
中图分类号:
姚志刚,王中生,颜超,等. 濒危植物银缕梅幼苗对不同光强的光合响应[J]. 南京林业大学学报(自然科学版), 2010, 34(03): 83-88.
YAO Zhigang, WANG Zhongsheng*, YAN Chao, DONG Zhuoyao, XU Weixiang, WEI Na, AN Shuqing. The photosynthesis response to different light intensity for the endangered plant Parrotia subaequalis[J].Journal of Nanjing Forestry University (Natural Science Edition), 2010, 34(03): 83-88.DOI: 10.3969/j.jssn.1000-2006.2010.03.017.
[1]Sack L, Grubb P J, Maraion T. The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understorias in southern Spain[J]. Plant Ecology, 2003, 168: 139-163. [2]韩有志,王政权. 森林更新与空间异质性[J]. 应用生态学报,2002,13(5):615-619. [3]Seholes J D, Press M C, Zipperlen S W. Differences in light anergy utilization and dissipation between dipterocarp rainforest tree seedlings[J]. Oecologia, 1997, 109: 41-48. [4]Thomas T L, Martin J L. Diverse responses of maple saplings to forest light regimes[J]. Annals of Botany, 1998, 82: 9-19. [5]陈圣宾,宋爱琴,李振基. 森林幼苗更新对光环境异质性的响应研究进展[J]. 应用生态学报,2005,16(2):365-370. [6]Vickers A D, Palmer S C F. The influence of canopy cover and other factors upon the regeneration of Scots pine and its associated ground flora within Glen Tanar National Nature Reserve[J]. Institute of Chartered Foresters, 2000, 73: 37-49. [7]MeGuire J P, Mitchell R J, Moser E B, et al. Gaps a in gappy forest:Plant resource,longleaf pine regeneration,and understory response to tree removal in longleaf pine savannas[J]. Candian Journal of Forest Research, 2001, 31: 765-778. [8]Denslow J S, Guzman G S. Variation in stand structure, light and seedling abundance across a tropical moist forest chronosequence, Panama[J]. J Veg Sci, 2000, 11(2): 201-212. [9]Bloor M G. Light response of shadetolerant tropical tree species in northeast Queensland: A comparison of forest and shadehousegrown seedlings[J]. Journal of Tropical Ecology, 2003, 19: 163-170. [10] Lusk C H. Leaf area accumulation helps juvenile evergreen trees tolerates shade in a temperate rainforest[J]. Oecologia, 2002, 132: 188-196. [11]张文辉,祖元刚,刘国彬. 十种濒危植物的种群生态学特征及致危因素分析[J]. 生态学报,2002,22(9):1512-1520. [12]Kendra A Lentz, Cipollini D F. Effect of light and simulated herbivory on growth of endangered northeastern bulrush, Scirpus ancistrochaetus Schuyler[J]. Plant Ecology,1998,139: 125-131. [13]Jun Matsumoto, Hiroyuki Muraoka, Izumi Washitani. Ecophysiological mechanisms used by Aster kantoensis,an endangered species, to withstand high light and heat stresses of its gravelly floodplain habitat[J]. Annals of Botany, 2000, 86: 777-785. [14]Katherine M. Aleric, L. Katherine Kirkman. Growth and photosynthetic responses of the federally endangered shrub, Lindera melissifolia(Lauraceae), to varied light environments[J]. American Journal of Botany, 2005, 92(4): 682-689. [15]马书荣,阎秀峰,陈伯林,等. 遮光条件下裂叶沙参和泡沙参气孔行为的对比研究[J]. 木本植物研究,2000,20(1):63-68. [16]孙谷畴,赵平,曾小平,等. 不同光强下焕镛木和观光木的光合参数变化[J]. 植物生态学报,2002(3):355-362. [17]关保华,常杰,葛滢,等. 濒危植物杭州石荠苎物质积累和分配对光的响应[J]. 浙江大学学报,2002,29(6):692-696. [18]颜超,王中生,安树青,等. 濒危植物银缕梅(Parrotia subaequalis)不同径级个体的光合能力差异与更新限制[J]. 生态学报,2008,28(9):4153-4161. [19]张旺锋,樊大勇,谢宗强,等. 濒危植物银杉对生长光强的季节性光合响应[J]. 生物多样性,2005,13(5):387-397. [20]吴征镒, Raven P H. Flora of China:Vol. 9[M]. 北京:科学出版社,2004. [21]Kull O, Niinemets B. Distribution of leaf photosynthetic properties in tree canopies: comparison of species with different shade tolerance[J]. Functional Ecology, 1998, 12: 472-479. [22]张明,刘福德,王中生,等. 热带山地雨林演替早期先锋树种与非先锋树种叶片特征的差异[J]. 南京林业大学学报:自然科学版,2008,32(4):28-32. [23]Prioul J L, Chartier P. Partitioning of transfer and carboxylation components of intercellular resistance to photosynthetic CO2 fixation: a critical analysis of the method used[J]. Annals of Botany, 1977, 41: 789-800. [24]Bassman J B, Zwier J C. Gas exchange characteristics of Populus trichocarpa, Populus deltoides and Populus trichocarpa ×P. deltoides clones[J]. Tree Physiology, 1991, 8: 145-149. [25]潘瑞炽. 植物生理学[M]. 北京:高等教育出版社,1999. [26]孙存华,李杨,杜伟,等. 干旱胁迫下藜的光合特性研究[J]. 植物研究,2007,27(6):715-720. [27]England J R, Attiwill P M. Changes in leaf morphology and anatomy with tree age and height in the broadleaved evergreen species, Eucalyptus regnans F. Muell[J]. Trees, 2006, 20: 79-90. [28]Bond J B, Farnsworth B T, Coulombe R A, et al. Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance[J]. Oecologia, 1999, 120: 183-192. [29]Rosati A, Day K Y, Dejong T M. Distribution of leafmass per unit area and leaf nitrogen concentration determine partitioning of leaf nitrogen with in tree canopies[J]. Tree Physiology, 2000, 20: 271-276. [30]King D A. Allocation of aboveground growth is related to light in temperate deciduous saplings[J]. Functional Ecology, 2003, 17(4): 482-488. [31]Gilmore A M, Ball M C. Protection and storage of chlorophyll in overwintering evergreens[J]. Proceedings of the National Academy of Sciences, 2000, 97: 11098-11101. [32]StraussDebenedettj S, Bazzaz F A. Plasticity and acclimation to light in tropical Moraceae of different succession positions[J]. Oecologia, 1991,87: 377-387. [33]Roux X L, Walcroft A S, Sinoquet H, et al. Photosynthetic light acclimation in peach leaves: importance of changes in mass: area ratio, nitrogen concentration, and leaf nitrogen portioning[J]. Tree physiology, 2001, 21: 377-386. [34]Frak E, Roux X L, Millard P, et al. Changes in total leaf nitrogen and partitioning of leaf nitrogen drive photosynthetic acclimation to light in fully developed walnut leaves[J]. Plant Cell & Environment, 2001, 24(12): 1279-1288. [35]闫兴富,曹敏. 不同光照对望天树种子萌发和幼苗早期生长的影响[J]. 应用生态学报,2007,18(1):23-29. (责任编辑郑琰燚)第34卷第3期 2010年5月南京林业大学学报(自然科学版) Journal of Nanjing Forestry University (Natural Science Edition)Vol.34, No.3 May, 2010 |
[1] | 丛明珠, 刘琪璟, 孙震, 董淳超, 钱尼澎. 长白山北坡植物群落β多样性及其组分驱动因素分析[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 99-106. |
[2] | 曹荔荔, 阮宏华, 李媛媛, 倪娟平, 王国兵, 曹国华, 沈彩芹, 徐亚明. 不同林龄水杉人工林地表大型土壤动物群落特征比较研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 91-98. |
[3] | 张怡婷, 夏念和, 林树燕, 丁雨龙. 我国寒竹属空间分布特征及影响因素[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 107-114. |
[4] | 胡衍平, 刘卫东, 张珉, 陈明皋, 程勇, 魏志恒, 庞文胜, 吴际友. 山乌桕家系叶片叶色参数和色素含量及其解剖结构研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 123-133. |
[5] | 王一洁, 王璐冕, 丁真慧, 钱程, 曹加杰. 城市滨水绿地空间夏季微气候效应研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 233-241. |
[6] | 赵国扬, 洪波, 高俊平, 赵鑫, 黄洪峰, 徐彦杰. 菊属新品种‘雀欢’[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 254-255. |
[7] | 任佳辉, 高捍东, 陈哲楠, 李浩, 刘强, 陈澎军. 杂交新美柳苗对盐涝胁迫的生长和生理响应[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 57-66. |
[8] | 董亚文, 陈双林, 谢燕燕, 郭子武, 张景润, 汪舍平, 徐勇敢. 林下植被演替过程中毛竹和主要优势树种叶片建成成本变化特征[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 179-186. |
[9] | 徐薪璐, 孔淑鑫, 吕卓, 江帅君, 赵婉琪, 林树燕. 靓竹叶色表型叶片形态、结构与光合特性相关性研究[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 145-154. |
[10] | 曹永慧, 陈庆标, 周本智, 葛晓改, 王小明. 不同截雨干旱时间对毛竹叶片氮含量时空分布的影响[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 155-161. |
[11] | 隋夕然, 李军, 陈娟, 华军, 沈谦, 杨洪胜, 何前程, 李由, 王伟, 彭冶, 葛之葳, 张增信. 徐州市侧柏人工林群落不同演替阶段物种多样性变化[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 171-178. |
[12] | 尹华康, 张晋东, 黄金燕, 蒲冠桦, 毛泽恩, 周材权, 黄耀华, 付励强. 四川马边大风顶自然保护区大熊猫主食竹空间分布特征[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 187-193. |
[13] | 孔凡斌, 金晨涛, 徐彩瑶. 罗霄山地区生态系统服务与居民福祉耦合协调关系变化及其影响因素[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 245-254. |
[14] | 龚霞, 吴银明, 王海峰, 曾攀, 唐亚, 温铿, 焦文献. 花椒新品种‘蜀椒1号’[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 265-266. |
[15] | 吴桐, 王贤荣, 伊贤贵, 周华近, 陈洁, 李蒙, 陈祥珍, 高书成. 樱花新品种‘胭脂雪’[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 267-268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||