南京林业大学学报(自然科学版) ›› 2010, Vol. 34 ›› Issue (04): 129-134.doi: 10.3969/j.jssn.1000-2006.2010.04.028

• 3S技术研究专栏 • 上一篇    下一篇

基于信息量的高分辨率影像纹理提取的研究

潘洁,李明诗   

  1. 南京林业大学森林资源与环境学院,江苏南京210037
  • 出版日期:2010-08-06 发布日期:2010-08-06
  • 基金资助:
    收稿日期:2009-12-30修回日期:2010-04-27基金项目:国家林业局“948”项目(2008-4-56);南京林业大学科技创新项目作者简介:潘洁(1978—),讲师,博士。Email: pan_jie@vip.sohu.net。引文格式:潘洁,李明诗. 基于信息量的高分辨率影像纹理提取的研究[J]. 南京林业大学学报:自然科学版,2010,34(4):129-134.

Textural features analysis of highresolution remote sensing image based on the information abundance

PAN Jie, LI Mingshi   

  1. College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, China
  • Online:2010-08-06 Published:2010-08-06

摘要: 从纹理提取方法入手,对影响遥感影像纹理提取精度的因素进行了分析。结果表明:移动窗口大小是影响基于灰度共生矩阵纹理提取的主要因素,对于高分辨率遥感影像,为了保持纹理融合影像信息量的丰富度,适宜的移动窗口选择范围为9×9至15×15之间。通过计算不同窗口大小的OIF值进行纹理组合的选择,得出对于较小的移动窗口3×3与5×5,纹理ME、HO与CR的组合将获得最丰富的纹理信息;对于窗口7×7至17×17,纹理VA、HO与CR的组合最适宜;而窗口大于17×17时,纹理VA、CO与SM的组合将会带来更丰富有效的纹理信息。对不同移动窗口下纹理组合的分类精度评价结果显示,适宜移动窗口下(9×9至17×17),VA、HO与CR纹理组合可提高高分辨率影像的信息提取精度。

Abstract: It is more important for spatial imformation discription of highresolution remote sensing image to improve the precision of textural features choosing. In this study, the factors to influence the textural features choosing were analyzed and the results showed that the moving window size was the main factor to affect the obtaining processes of textural features based on the Gray Level Cooccurrance Matrix method. For the highresolution remote sensing image, the most proper moving window size was determined from 9×9 to 15×15. By the calculation of OIF values, the textural features of ME,HO and CR were chosen to be best combination for the size of 3×3 and 5×5, and the combination of VA,HO and CR was considered the most properly for the moving window size from 7×7 to 17×17. Finally, if the moving window size was chosen larger than 17×17, the best combination of VA,CO and SM can be chosen. Precision assessment of different textural combinations showed that VA,HO,CR combination with optimal moving window size(from 9×9 to 17×17) could evidently improve the classification precision for highresolution remote sensing image.

中图分类号: