The photosynthetic and phenotypic response of Phragmites australis to sediment dredging
SUN Yixiang1, ZHUANG Yao1, WANG Zhongsheng1*, DENG Zifa2, YAO Zhigang1, CAO Furong3, WANG Jian3, AN Shuqing1
Author information+
1.School of Life Science, Nanjing University, Nanjing 210093, China; 2.School of Life Science, Nantong University, Nantong 226019, China; 3.Qinhu National Wetland Park, Jiangyan 225508, China
Phragmites australis is an important model plant in wetland reconstruction. We selected five representative Ph.australis swamps of reed that were reconstructed after sediment dredging, and a swamp that had not been dredged in Qinhu National Wetland Park as a control, and we compared the response of Ph.australis to the sediment dredging through measuring and analyzing photosynthetic physiological parameters during growing season and phenotypic parameters during the mature stage of Ph.australis. The results showed that the content of TN and TP in the sediment in Qinhu National Wetland Park had a significant decrease through dredging, specifically, the level of TN dropped to 480—1 080 mg/kg, and the level of TP to 536—585 mg/kg. The maximal net photosynthetic rate, apparent light use efficiency and apparent CO2 use efficiency had significant correlation with TN content in sediment in the swamps that were constructed after sediment dredging. In addition, the effective range of light use(the difference of LSP and LCP) increased significantly with increment in sediment nitrogen content. However, TP in sediment had significant correlation with only apparent light use efficiency. The length, area, dry weight of the 3rd leaf and the aboveground biomass had significant positive correlation with TN content in sediment, but no correlation with TP content in sediment. Extensive dredging in some sample plots may have negative impact on the growth of Ph.australis. Therefore when sediment dredging and reconstruction of aquatic vegetation need to be done, one should consider the impacts on aquatic plants with different adaptation to sediment (nutritional conditions). Dredging recklessly in large scale may create new limit factors in the reconstruction of aquatic vegetation.
SUN Yixiang, ZHUANG Yao, WANG Zhongsheng, DENG Zifa, YAO Zhigang, CAO Furong, WANG Jian, AN Shuqing.
The photosynthetic and phenotypic response of Phragmites australis to sediment dredging[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2010, 34(06): 71-76 https://doi.org/10.3969/j.jssn.1000-2006.2010.06.016
中图分类号:
Q945.79
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]金相灿,刘鸿亮,屠清瑛. 中国湖泊富营养化[M]. 北京:中国环境科学出版社,1990. [2]秦伯强,杨柳燕,陈非洲,等. 湖泊富营养化发生机制与控制技术及其应用[J]. 科学通报,2006,51(16):1857-1866. [3]金相灿. 湖泊富营养化控制和管理技术[M]. 北京:化学工业出版社,2001. [4]濮培民,王国祥,胡春华, 等. 底泥疏浚能控制湖泊富营养化吗?[J]. 湖泊科学,2000,12(3):269-279. [5]钟继承,范成新. 底泥疏浚效果及环境效应研究进展[J]. 湖泊科学,2007,19(1):1-10. [6]吴芝瑛,虞左明,盛海燕,等. 杭州西湖底泥疏浚工程的生态效应[J]. 湖泊科学,2008,20(3):277-284. [7]王栋,孔繁翔,刘爱菊,等. 生态疏浚对太湖五里湖湖区生态环境的影响[J]. 湖泊科学,2005,17(3):263-268. [8]陈开宁,陈小峰,陈伟民,等. 不同基质对四种沉水植物生长的影响[J]. 应用生态学报,2006,17(8):1511-1516. [9]包先明,丁卓丽,祝朋飞,等. 不同沉水植物在太湖污染底泥上适应性生长过程及水体氮磷的响应[J]. 土壤通报,2007,38(6):1191-1195. [10]文明章,郑有飞,吴莱军. 富营养化水体中总氮与总磷比对苦草生长的影响[J]. 生态学杂志,2008,27(3):414-417. [11]Prioul J L, Chartier P. Partitioning of transfer and carboxylation components of intercellular resistance to photosynthetic CO2 fixation: a critical analysis of the method use[J]. Aquatic Botany, 1977, 41: 789-800. [12]Walker. Automated measurement of leaf photosynthetic O2 evolution as a function of photon flux density[J]. Philosophical Trascations of the Royal Society London B,1989, 323: 313-326. [13]同小娟,李俊,于强. 农田生态系统光能利用效率及其影响因子分析[J]. 自然资源学报,2009,24(8):1393-1401. [14]冯大兰,刘芸,钟章成,等. 三峡库区消落带芦苇(Phragmites communis(Reed))的光合生理响应和叶绿素荧光特性[J]. 生态学报,2008,28(5):2013-2021. [15]鲍士旦. 土壤农业化学分析[M]. 3版. 北京:中国农业出版社,2000. [16]Kitao M, Lei T T, Koike T, et al. Susceptibility to photoinhibition of tree deciduous broadleaf tree species with different successional traits raised under various light regimes[J]. Plant Cell & Environment, 2000, 23: 81-89. [17]袁旭音,许乃政,陶于祥,等. 太湖底泥的空间分布和富营养化特征[J]. 资源调查与环境,2003,24(1):20-28. [18]沈亦龙,何品晶,邵立明. 太湖五里湖底泥污染特性研究[J]. 长江流域资源与环境,2004(6):584-588. [19]武维华. 植物生理学[M]. 北京:科学技术出版社,2003. [20]郭二辉,胡聃,田朝阳,等. 土壤氮素与水分对植物光合生理生态的影响研究[J]. 安徽农业科技,2008,36(26):11211-11213. [21]吴统贵,李艳红,吴明,等. 芦苇光合生理特性动态变化及其影响因子分析[J]. 西北植物学报,2009,29(4):0789-0794. [22]张可炜,王贤丽,李坤明,等. 低磷胁迫对耐低磷玉米自交系幼苗光合特性的影响[J]. 山东大学学报,2007,42(3):1-6. [23]Romero J A, Brix H, Comín F A. Interactive effects of N and P on growth, nutrient allocation and NH4 uptake kinetics by Phragmites australis[J]. Aquatic Botany, 1999, 64: 369-380. [24]段晓男,王效科,欧阳志云,等. 乌梁素海野生芦苇群落生物量及影响因子分析[J]. 植物生态学报,2004,28(2):246-251. [25]盖平,鲍智娟,张结军,等. 环境因素对芦苇地上部分生物量影响的灰色分析[J]. 东北师大学报:自然科学版,2002,34(3):87-91. [26]Koerselman W, Meuleman A F M. The vegetation N∶P ration : a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecolog, 1996, 33: 1441-1450. [27]Hecky R E, Kilman P. Nutrient limitation of phytoplankton in freshwater and marine environment: a review of recent evidence of the effects of enrichment [J]. Limnology and Oceanography, 1988, 33: 796-822. [28]Gras A F, Koch M S, Madden C J. Phosphorus uptake kinetics of dominant tropical seagrass Thalassia testudinum[J]. Aquatic Botany, 2003, 76: 299-315. [29]吴爱平,吴世凯,倪乐意. 长江中游浅水湖泊水生植物氮磷含量与水柱营养的关系[J]. 水生生物学报,2005,29(4):406-412. [30]宋玉芝,秦伯强,高光. 氮及氮磷比对附着藻类及浮游藻类的影响[J]. 湖泊科学,2007,19 (2):125-130. [31]雷泽湘,徐德兰,谢贻发,等. 太湖水生植物氮磷与湖水沉积物氮磷含量的关系[J]. 植物生态学报,2008,32(2):402-407. [32]Armstrong J F, AfreenZobayed, Armstrong W. Phragmites dieback: sulphideand aceticinduced bud and root death, lignifications, and blockages within aeration and vascular system[J]. New Phytologist, 1996, 133: 601-614. [33]叶春,于海婵,宋祥甫,等. 基底条件和栽培方式对芦苇和香蒲生长发育的影响[J]. 环境科学研究,2008,21(1):59-63. [34]杨卓,寇建林,李博文,等. 白洋淀底泥在芦苇生境下的变化规律初探[J]. 生态环境,2008,17(1):81-85. [35]LzagurirrMayoval, Carballo M L O, Egea R, et al. Responses of rhizobiumino culated and nitrogensupplied cowpea plants to increasing phosphorus conventions in solution culture[J]. Journal of Plant Nutrition and Soil Science, 2002, 25: 2273- 2387.