培养基组成对里氏木霉合成β-甘露聚糖酶的影响

王静,李鑫,朱均均,余世袁,勇强

南京林业大学学报(自然科学版) ›› 2013, Vol. 37 ›› Issue (01) : 101-104.

PDF(1560838 KB)
PDF(1560838 KB)
南京林业大学学报(自然科学版) ›› 2013, Vol. 37 ›› Issue (01) : 101-104. DOI: 10.3969/j.issn.1000-2006.2013.01.018
研究论文

培养基组成对里氏木霉合成β-甘露聚糖酶的影响

  • 王 静,李 鑫,朱均均,余世袁,勇 强*
作者信息 +

Effects of medium components on β-mannanase production by Trichoderma reesei

  • WANG Jing, LI Xin, ZHU Junjun, YU Shiyuan, YONG Qiang*
Author information +
文章历史 +

摘要

通过改变产酶培养基中的营养成分与比例,采用酶活力测定方法,分析培养基中的碳源种类和浓度、氮源组成、碳氮比(mC:mN)等主要因素对里氏木霉合成β-甘露聚糖酶的影响。结果表明,20 g/L微晶纤维素为碳源、含氮素质量比为1:1的硫酸铵和尿素为氮源、 mC:mN=4的培养基组成,是里氏木霉合成β-甘露聚糖酶的最佳条件。在此条件下β-甘露聚糖酶酶活力在发酵96 h时达到最大,β-甘露聚糖酶酶活力和β-甘露糖苷酶酶活力分别为4.48、0.04 μmol/(min·mL)。

Abstract

In order to improve the synthesis of β-mannanase by Trichoderma reesei,and determinate enzyme activity,fermentation medium of nutritional composition and proportion were investigated,which included carbon sources, carbon source concentration, nitrogen sources and ratio, carbon to nitrogen(mC:mN)ratio of four main factors on the biosynthesis of β-mannanase by Trichoderma reesei.The results showed that 20 g/L microcrystalline cellulose used as the carbon source, ammonium sulfate-urea mixture with the ratio of 1:1 used as the nitrogen source, the mC:mN=4 of culture medium composition were optimal nutrient for β-mannosidase synthesis of Trichoderma reesei.The highest β-mannanase activity and β-mannosidase activity were 4.48 and 0.04 μmol/(min·mL), respectively.The maximal β-mannanase activity was gained after 96 h fermentation.

引用本文

导出引用
王静,李鑫,朱均均,余世袁,勇强. 培养基组成对里氏木霉合成β-甘露聚糖酶的影响[J]. 南京林业大学学报(自然科学版). 2013, 37(01): 101-104 https://doi.org/10.3969/j.issn.1000-2006.2013.01.018
WANG Jing, LI Xin, ZHU Junjun, YU Shiyuan, YONG Qiang. Effects of medium components on β-mannanase production by Trichoderma reesei [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2013, 37(01): 101-104 https://doi.org/10.3969/j.issn.1000-2006.2013.01.018
中图分类号: Q814   

参考文献

[1] Mccleary B V. β-D-mannanases[J]. Methods in Enzymology,1988,160:596-610.
[2] Schombug D, Salzmamn M. Enzyme handbook[M]. Berlin:Springer-Verlay:1991.
[3] Dhawan S, Kaur J. Microbial mannanases: an overview of production and applications[J]. Critical Reviews in Biotechnology,2007,27(4):197-216.
[4] Sugiyama N, Shimahar H, Andoh T, et al. Mannan and related compounds. II. Konjac-mannanase from the tubers of Amorphophallus konjac[J]. Agricultural and Biological Chemistry,1973(1):9-17.
[5] Ootsuka S, Saga N, Suzuki K, et al. Isolation and cloning of an endo-β-mannanase from pacific abalone Haliotis discushannai[J]. Journal of Biotechnology,2006,125:269-280.
[6] Moreira L R S, Filho E X F. An overview of mannan structure and mannan-degrading enzyme systems[J]. Applied Microbiology and Biotechnology, 2008,79(2):165-178.
[7] Mohamad S N, Ramanan R N, Mohamad R. Improved mannan-degrading enzymes’ production by Aspergillus niger through medium optimization[J]. New Biotechnology, 2011,28(2):146-152.
[8] 北京联合盛邦生物技术有限公司. β-甘露聚糖酶的制备及其在饲料工业中的应用进展[J].中国动物保健, 2010,12(1):82-85. Beijing Union Chengbang Biological Technology CO LTD. The development of β-mannanase preparation and its application in feed industry[J].China Animal Health, 2010, 12(1):82-85.
[9] Kulminskaya A A, Eneiskaya E V, Isaeva-Ivanova L S, et al. Enzymatic activity and β-galacto mannan binding property of β-mannosidase from Trichoderma reesei[J]. Enzyme and Microbial Technology, 1999,25:372-377.
[10] St(。overa)lbrand H, Saloheimo A, Vehmaanperä J, et al. Cloning and expression in Saccharomyces cerevisiae of a Trichoderma reesei β-mannanase gene containing a cellulose binding domain[J].Applied and Environmental Microbiology,1995,61(3):1090-1097.
[11] St(。overa)lbrand H. Purification and characterization of two β-mannanases from Trichoderma reesei.[J]. Journal of Biotechnology,1993,29(3):229-242.
[12] Juhasz T, Szengyel Z, Reczey K, et al. Characterization of cellulose and hemicellulases produced by Trichoderma reesei on various carbon sources[J]. Process Biochemistry,2005,40(11):3519-3525.
[13] Arisan-Atac I, Hodits R, Kristufek D, et al. Purification and characterization of a β-mannanase of Trichoderma reesei C-30[J]. Applied Microbiology and Biotechnology,1993,39(1):58-62.
[14] Mudau M M. The production, purification and characterization of endo-1,4-β-mannanase from newly isolated strains of Scopulariopsis candida[D]. Bloemfontein in South Africa: Faculty of Natural and Agricultural Sciences,2006.
[15] 俞俊棠.新编生物工艺学[M].北京:化学工业出版社,2003.
[16] 勇强,李树炎,陈牧,等.氮源对里氏木霉木聚糖酶和纤维素酶生物合成的影响[J].林产化学与工业, 2004,24(3):7-11. Yong Q, Li S Y, Chen M, et al. Effects of nitrogen sources on the biosynthesis of xylanase and cellulose by Trichoderma reesei[J]. Chemistry & Industry of Forest Products, 2004, 24(3):7-11.

基金

收稿日期:2012-05-15 修回日期:2012-10-23
基金项目:国家林业公益性行业科研专项项目(20090417); 江苏高校自然科学重大基础研究项目(11KJA220004); 江苏省科技支撑计划(BE2010732); 江苏高校科技创新团队资助项目
第一作者:王静,博士生。*通信作者:勇强,教授。E-mail: swhx@njfu.com.cn。
引文格式:王静,李鑫,朱均均,等. 培养基组成对里氏木霉合成β-甘露聚糖酶的影响[J]. 南京林业大学学报:自然科学版,2013,37(1):101-104.

PDF(1560838 KB)

Accesses

Citation

Detail

段落导航
相关文章

/