以东方百合商品种‘索蚌’(‘Sorbonne’)和‘康斯坦撒’(‘Constantsa’)及其F1代杂交群体为实验材料,从100对SRAP引物中筛选出59对扩增产物丰富、具有较高多态性的引物,同时对PCR反应体系进行了优化。采用正交设计,对Mg2+、dNTPs、Taq聚合酶及引物浓度进行4因素4水平优化,并在此基础上对Mg2+、引物浓度和退火温度进行了单因素优化。结果表明,东方百合SRAP的最佳体系为:1×Buffer,Mg2+浓度2.7 mmol/L,dNTPs浓度 0.25 mmol/L,引物浓度 0.8 μmol/L,Taq聚合酶1.5 μmol/min, 模板DNA 60~100 ng。SRAP两步反应最佳退火温度为第1步35 ℃,第2步退火59.3 ℃。最后用‘索蚌’、‘康斯坦撒’和部分F1植株对优化体系进行稳定性检测,发现所筛选出的59对引物在优化的体系下均有稳定的扩增产物。
Abstract
One hundred pairs of SRAP primers were screened by using Oriental lily varieties including‘Sorbonne’,‘Constantsa’ and their hybrid offspring as materials. As results,59 pairs which had rich products and high polymorphism were selected,and the PCR reaction system were also optimized. First of all, an orthogonal design with four factors and four levels was adopted to optimize the concentration of Mg2+, dNTPs, Taq DNA polymerase and primers. Then the concentration of Mg2+, primers and annealing temperature was analyzed with a single-factor design. It was revealed that the optimal reaction system was: 1×Buffer,Mg2+ 2.7 mmol/L,dNTPs 0.25 mmol/L, primers 0.8 μmol/L, Taq DNA polymerase 1.5 μmol/min, and DNA 60-100 ng. The optimal annealing temperature of SRAP two-step reaction was 35 ℃(first step)and 59.3 ℃(second step).
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Asano Y, Lilium L, Tsukamoto Y. The Grand Dictionary of Horticulture [M]. Tokyo:Shogakukon, 1989.
[2] Smyth D R, Kongsuwan K, Wisudharomn S. A survey of C-band patterns in chromosomes of Lilium(Liliaceae)[J]. Plant Syst Evol, 1989, 163:53-69.
[3] van Heusden A W, Jongerius M C, van Tuyl J M, et al. Molecular assisted breeding for disease resistance in lily [C]// Van Bockstaele E. XX International Eucarpia Symposium, Section Ornamentals, Strategies for New Ornamentals, Part II. 2001.(2011-11-01)http://www.actahor.ory/books/572/index.htm.
[4] 卓仁英,陈益泰,陆志群.分子标记辅助选择育种技术研究动态[J].浙江林业科技,2002,22(3):7-13. Zhuo R Y, Chen Y T, Lu Z Q. Advances in MAS technique[J]. J of Zhejiang For Sci & Tech, 2002, 22(3):7-13.
[5] Li G, Quiros C. Sequence related amplified polymorphism(SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica [J]. Theoretical and Applied Genetics, 2001, 103(2):455-461.
[6] Budak H, Shearman R C, Parmaksiz I, et al. Molecular characterization of buffalo grass germplasm using sequence related amplified polymorphism markers [J]. Theor Appl Genet, 2004, 108(2):328-334.
[7] 李建军, 刘志坚, 肖层林, 等. SRAP技术在遗传的研究进展 [J]. 现代生物医学进展, 2007, 7:783-786. Li J J, Liu Z J, Xiao C L, et al. Research progress on SRAP technique in genetics [J]. Progress in Modern Biomedicine, 2007, 7:783-786.
[8] Alwala S, Kimbeng C, Veremis J, et al. Linkage mapping and genome analysis in a Saccharum interspecific cross using AFLP, SRAP and TRAP markers [J]. Euphytica, 2008, 164(1):37-51.
[9] Dinler G, Budak H. Analysis of expressed sequence tags(ESTs)from Agrostis species obtained using sequence related amplified polymorphism [J]. Biochem Genet, 2008, 46(9):663-676.
[10] Wang G, Pan J, Li X, et al. Construction of a cucumber genetic linkage map with SRAP markers and location of the genes for lateral branch traits [J]. Science in China Series C:Life Science, 2005, 48(3):213-220.
[11] Ferriol M, Pic B, Nuez F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers [J]. Theoretical and Applied Genetics, 2003, 107(2):271-282.
[12] Vandemark G J, Ariss J J, Bauchan G A, et al. Estimating genetic relationships among historical sources of alfalfa germplasm and selected cultivars with sequence related amplified polymorphisms [J]. Euphytica, 2006, 152(1):9-16.
[13] 谭碧玥, 王源秀, 徐立安. 分子标记SRAP及其在林木研究中的应用 [J]. 世界林业研究, 2009, 22(5):45-50. Tan B Y, Wang Y X, Xu L A. Molecular marker SRAP and its application in forest tree researches [J]. World Forestry Research, 2009, 22(5):45-50.
[14] 吴鑫, 雷天刚, 何永睿, 等. 柑桔SRAP和ISSR分子标记技术体系的建立与优化 [J].分子植物育种, 2008, 6(1):170-176. Wu X, Lei T G, He Y R, et al. Establishment and optimization of SRAP and ISSR marker system in Citrus [J]. Molecular Plant Breeding, 2008, 6(1):170-176.
[15] Han X, Wang L, Shu Q, et al. Molecular characterization of tree peony germplasm using sequence related amplified polymorphism markers [J]. Biochemical Genetics, 2008, 46(3):162-179.
[16] 徐建华, 杨虹琦, 杨程, 等. 烟草DNA的提取与SRAP反应体系优化 [J]. 湖南农业大学学报:自然科学版, 2009, 35(3):257-259. Xu J H, Yang H Q, Yang C, et al. DNA extraction and optimization of SRAP reaction system in tobacco [J]. Journal of Hunan Agricultural University:Natural Sciences, 2009, 35(3):257-259.
[17] 李达, 熊兴耀, 于晓英, 等. 红花檵木SRAP反应体系的建立及优化 [J]. 中南林业科技大学学报, 2008, 28(5):22-27. Li D, Xiong X Y, Yu X Y, et al. Establishment and optimization of SRAP reaction system in Loropetalum chinense var.rubrum[J]. Journal of Central South University of Forestry & Technology, 2008, 28(5):22-27.
[18] 吴莺莺,彭方仁,郝明灼,等.油茶SRAP-PCR反应体系的建立[J].南京林业大学学报:自然科学版,2011,35(5):112-116. Wu Y Y, Peng F R, Hao M Z, et al. Establishment reaction system of the SRAP-PCR in Camellia oleifera [J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2011, 35(5):112-116.
基金
收稿日期:2011-11-20 修回日期:2012-10-26
基金项目:国家自然科学基金项目(30972407); 江苏省农业科技自主创新资金项目(CX(12)2018)
第一作者:邱帅,博士生。*通信作者:席梦利,副教授。E-mail:ximemglinjfu@126.com; 施季森,教授。E-mail: jshi_1221@163.com。
引文格式:邱帅,丁信誉,席梦利,等. 东方百合SRAP体系优化及引物筛选[J]. 南京林业大学学报:自然科学版,2013,37(3):6-10.