南京林业大学学报(自然科学版) ›› 2013, Vol. 37 ›› Issue (06): 147-152.doi: 10.3969/j.issn.1000-2006.2013.06.029
甄 艳,陈金慧,施季森*
出版日期:
2013-12-18
发布日期:
2013-12-18
基金资助:
ZHEN Yan, CHEN Jinhui, SHI Jisen*
Online:
2013-12-18
Published:
2013-12-18
摘要: 植物体细胞胚胎发生(简称体胚发生)是细胞全能性的体现。在适宜的培养体系下,植物的体细胞理论上均存在脱分化启动胚发育进程的可能。尽管体胚发生这一生物学发育进程的报道已有50多年的历史,但仍有一些重要的科学问题还未得到完全阐明,例如成熟外植体胚性能力恢复的机理、外源/内源因子如何调控胚性能力获得、胚性获得的关键分子途径、胚性获得调控的信号网络等。笔者综述了体胚能力恢复的诱导因子、生理生化标记、调控基因、miRNA调控和蛋白质组特征等方面的研究进展。
中图分类号:
甄艳,陈金慧,施季森. 植物体细胞胚发生胚性潜势恢复的研究进展[J]. 南京林业大学学报(自然科学版), 2013, 37(06): 147-152.
ZHEN Yan, CHEN Jinhui, SHI Jisen. Research progress on the reacquisition of embryogenic potentiality in plant somatic embryogenesis[J].Journal of Nanjing Forestry University (Natural Science Edition), 2013, 37(06): 147-152.DOI: 10.3969/j.issn.1000-2006.2013.06.029.
[1] Hermann v Guttenberg. Kulturversuche mit isolierten Pflanzenzellen[J]. Planta, 1943, 33(4):576-588. [2] Vogel G. How does a single somatic cell become a whole plant [J]. Science, 2005, 309(5731):86. [3] Jimenez V M. Regulation of in vitro somatic embryogenesis with emphasis on to the role of endogenous hormones [J]. Revista Brasileira de Fisiologia Vegetal, 2001, 13(2):196-223. [4] Wang X, Nolan K E, Irwanto R R,et al. Ontogeny of embryogenic callus in Medicago truncatula: the fate of the pluripotent and totipotent stem cells [J]. Annals of Botany, 2011, 107(4):599-609. [5] Cooke T J, Racusen R H,Cohen J D. The role of auxin in plant embryogenesis [J]. The Plant Cell, 1993, 5(11): 1494-1495. [6] 张金凤,方升佐,尚旭兰,等.青钱柳幼胚愈伤组织的诱导[J].南京林业大学学报:自然科学版,2012,36(5):47-50. Zhang J F, Fang S Z, Shang X L,et al. Callus induction from young embryos of Cyclocarya paliurus[J]. Journal of Nanjing Forestry University:Natural Sciences Edition,2012,36(5):47-50. [7] Sagare A P, Lee Y L, Lin T C, et al. Cytokinin-induced somatic embryogenesis and plant regeneration in Corydalis yanhusuo(Fumariaceae)-a medicinal plant. [J]. Plant Science, 2000, 160(1): 139-147. [8] Kuo C L, Sagare A P, Lo S F, et al. Abscisic acid promotes development of somatic embryos on converted somatic embryos of Corydalis yanhusuo(Fumariaceae)[J]. Journal of Plant Physiology, 2002, 159(4): 423-427. [9] Jimenez V M. Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis [J]. Plant Growth Regulation, 2005, 47(2-3): 91-110. [10] Yang X, Zhang X. Regulation of somatic embryogenesis in higher plants [J]. Critical Reviews in Plant Science, 2010, 29(1): 36-57. [11] Matsubayashi Y. Recent progress in research on small post-translationally modified peptide signals in plants [J]. Genes to Cells, 2012, 17: 1-10. [12] Zhang J, Mab H, Chen S, et al. Stress response proteins’ differential expression in embryogenic and non-embryogenic callus of Vitis vinifera L. cv. Cabernet Sauvignon—a proteomic approach [J]. Plant Science, 2009, 177(2): 103-113. [13] Karami O, Saidi A. The molecular basis for stress-induced acquisition of somatic embryogenesis [J]. Molecular Biology Reports, 2010, 37(5): 2493-2507. [14] Halperin W. Alternative morphogenetic events in cell suspensions [J]. American Journal of Botany, 1966, 53(5): 443-453. [15] Jones T J, Rost T L. The developmental anatomy and ultrastructure of somatic embryos from rice(Oryza sativa L.)scutellum epithelial cells[J]. Botanical Gazette, 1989, 150(1): 41-49. [16] Garrido D, Vicente O, Heberle-Bors E, et al. Cellular changes during the acquisition of embryogenic potential in isolated pollen grains of Nicotiana tabacum [J]. Protoplasma, 1995, 186(3-4): 220-230. [17] Pedroso M C, Pais M S. Factors controlling somatic embryogenesis[J]. Plant Cell, Tissue and Organ Culture, 1995, 43(2): 147-154. [18] De Jong A J, Schmidt E D,de Vries S C. Early events in higher-plant embryogenesis [J]. Plant Molecular Biology, 1993, 22(2): 367-377. [19] Smith D L, Krikorian A D. pH control of carrot somatic embryogenesi[C]//Nijkamp H J J, van der Plas L H W, Van Aartrijk J. Progress in Plant Cellular and Molecular Biology. Netherlands: Kluwer Academic Publishers, 1990. [20] Komamine A, Matsumoto M, Tsukahara M, et al., Mechanisms of somatic embryogenesis in cell cultures-physiology, biochemistry and molecular biology[C]// Nijkamp H J J, Van Derplo L H N, Van Aortrijk J. Progress in Plant Cellular and Molecular Biology.Netherlands: Kluwer Acad emic Publisher, 1990. [21] Pasternak T P, Prinsen E, Ayaydin F, et al. The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa [J]. Plant Physiology, 2002, 129(4): 1807-1819. [22] Fransz P F, Schel J H N. An ultrastructure study on the early development of Zea mays somatic embryos [J]. Canadian Journal of Botany, 1991, 69(4): 858-865. [23] Namasivayam P, Skepper J, Hanke D. Identification of a potential structural marker for embryogenic competency in the Brassica napus spp. oleifera embryogenic tissue [J]. Plant Cell Reports, 2006, 25(9): 887-895. [24] De Jong A J, Hendriks T, Meijer E A, et al. Transient reduction in secreted 32 KD chitinase prevents somatic embryogenesis in the carrot(Daucus carota L)variant ts11 [J]. Developmental Genetics, 1995, 16(4): 332-343. [25] van Hengel A J, Tadesse Z, Immerzeel P, et al. N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis [J]. Plant Physiology, 2001, 125(4): 1880-1890. [26] Karami O, Aghavaisi B, Mahmoudi Pour A. Molecular aspects of somatic-to-embryogenic transition in plants [J]. Journal Chemical Biology, 2009, 2(4): 177-190. [27] 石雅丽, 张锐, 林芹,等. 植物体细胞胚胎发生受体类蛋白激酶的生物学功能 [J]. 遗传, 2012, 34(5): 669-673. Shi Y L, Zhang R, Lin Q, et al. Biological function of the somatic embryogenesis receptor-like kinases in plant[J]. Hereditas, 2012, 34(5): 669-673. [28] 魏丕伟. 杂交鹅掌楸体细胞胚胎发生标志基因克隆及表达分析[D]. 南京:南京林业大学,2009. Wei P W. Isolation and expression analysis of the marker genes related to somatic embryogenesis of Liriodendron hybrids[D]. Nanjing:Nanjing Forestry University,2009. [29] 高燕, 席梦利, 王桂凤,等. 马尾松体细胞胚胎发生相关基因PmSERK1 的克隆与表达分析 [J]. 分子植物育种, 2010, 8(1): 53-58. Gao Y,Xi M L,Wang G F,et al. Molecular characterization and expression analysis of PmSERKl during somatic embryogenesis in masson pine[J].Molecular Plant Breeding, 2010, 8(1): 53-58. [30] Namasivayam P. Acquisition of embryogenic competence during somatic embryogenesis [J]. Plant Cell Tissue Organ Culture, 2007, 90(1): 1-8. [31] Zhang B H, Pan X P, Cobb G P, et al. Plant microRNA: A small regulatory molecule with big impact [J]. Developmental Biology, 2006, 289(1): 3-16. [32] Luo Y C, Zhou H, Li Y, et al. Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development [J]. Febs Letters, 2006, 580(21): 5111-5116. [33] Zhang S, Zhou J, Han S, et al. Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis[J]. Biochemical and Biophysical Research Communications, 2010, 398(3): 355-360. [34] Li T, Chen J, Qiu S, et al. Deep sequencing and microarray hybridization identify conserved and species-specific microRNAs during somatic embryogenesis in hybrid yellow poplar [J]. Plos One, 2012, 7(8):e43451. [35] Zhang J, Zhang S, Han S, et al. Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis [J]. Planta, 236(2): 647-657. [36] Chen C J, Liu Q, Zhang Y C, et al. Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus [J]. Rna Biology, 8(3): 538-547. [37] Lyngved R, Renaut J, Hausman J F, et al. Embryo-specific proteins in Cyclamen persicum analyzed with 2-D DIGE [J]. Journal of Plant Growth Regulation, 2008, 27(4): 353-369. [38] Nogueira F C S, Goncalves E F, Jereissati E S, et al. Proteome analysis of embryogenic cell suspensions of cowpea(Vigna unguiculata)[J]. Plant Cell Reports, 2007, 26(8): 1333-1343. [39] Marsoni M, Bracale M, Espen L, et al. Proteomic analysis of somatic embryogenesis in Vitis vinifera [J]. Plant Cell Reports, 2008, 27(2): 347-356. [40] Yin L, Tao Y, Zhao K, et al. Proteomic and transcriptomic analysis of rice mature seed-derived callus differentiation [J]. Proteomics, 2007, 7(5): 755-768. [41] Kreuger M, Holst G J. Arabinogalactan proteins are essential in somatic embryogenesis of Daucus carota L. [J]. Planta, 1993, 189(2): 243-248. [42] Egertsdotter U, Von Arnold S. Importance of arabinogalactan proteins for the development of somatic embryos of Norway spruce(Picea abies)[J]. Physiologia Plantarum, 1995, 93(2): 334-345. [43] Namasivayam P, Skepper J N, Hanke D. Distribution of arabinogalactan protein(AGP)epitopes on the anther-derived embryoid cultures of Brassica napus [J]. Pertanika Journal of Tropical Agricultural Science, 2010, 33(2): 303-313. [44] Acosta-Garcia G, Vielle-Calzada J P. A classical arabinogalactan protein is essential for the initiation of female gametogenesis in Arabidopsis [J]. Plant Cell, 2004, 16(10): 2614-2628. [45] Caliskan M, Turet M,Cuming A C. Formation of wheat(Triticum aestivum L.)embryogenic callus involves peroxide-generating germin-like oxalate oxidase [J]. Planta, 2004, 219(1): 132-140. [46] Domon J M, Dumas B, Laine E, et al. Three glycosylated polypeptides secreted by several embryogenic cell cultures of pine show highly specific serological affinity to antibodies directed against the wheat germin apoprotein monomer [J]. Plant physiology, 1995, 108(1): 141-148. [47] Imin N, De Jong F, Mathesius U, et al. Proteome reference maps of Medicago truncatula embryogenic cell cultures generated from single protoplasts [J]. Proteomics, 2004, 4(7): 1883-1896. [48] Imin N, Nizamidin M, Daniher D, et al. Proteomic analysis of somatic embryogenesis in Medicago truncatula: Explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments [J]. Plant Physiology, 2005, 137(4): 1250-1260. [49] Zhen Y, Zhao Z Z, Zheng R H, et al. Proteomic analysis of early seed development in Pinus massoniana L [J]. Plant Physiology and Biochemistry, 2012, 54: 97-104. [50] Sterk P, Booij H, Schellekens G A, et al. Cell-specific expression of the carrot EP2 lipid transfer protein gene [J]. The Plant Cell, 1991, 3(9): 907-21. [51] Thoma S, Hecht U, Kippers A, et al. Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis[J]. Plant Physiology, 1994, 105(1): 35-45. [52] Chugh A, Khurana P. Gene expression during somatic embryogenesis-recent advances [J]. Current Science, 2002, 83(6): 715-730. [53] Tchorbadjieva M I, Kalmukova R I, Pantchev I Y, et al. Monoclonal antibody against a cell wall marker protein for embryogenic potential of Dactylis glomerata L. suspension cultures [J]. Planta, 2005, 222(5): 811-819. [54] Rose R J, Mantiri F R, Kurdyukov S. The developmental biology of somatic embryogenesis[C]//Pua E C, Davey M R. Plant Developmental Biology: Biotechnology Perspectives. Berlin: Springer-Verlag, 2010. [55] Fehér A. The initiation phase of somatic embryogenesis: what we know and what we don’t [J]. Acta Biologica Szegediensis, 2008, 52(1): 53-56. |
[1] | 马坛, 田野, 王书军, 李文昊, 段启英, 张庆源. 不同性别南方型黑杨无性系叶片对土壤短期间歇性干旱的生理响应[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 172-180. |
[2] | 王改萍, 章雷, 曹福亮, 丁延朋, 赵群, 赵慧琴, 王峥. 红蓝光质对银杏苗木生长生理特性及黄酮积累的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 105-112. |
[3] | 宋子琪, 卞国良, 林峰, 胡凤荣, 尚旭岚. 流式细胞仪鉴定青钱柳倍性方法的建立及其应用[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 61-68. |
[4] | 孙旭高, 陶家璐, 谢微, 石洁, 张宝津, 邓小梅. 米老排优树组培技术体系优化研究[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 69-78. |
[5] | 顾宸瑞, 袁启航, 姜静, 穆怀志, 刘桂丰. 基于转录组测序的关联分析定位裂叶桦叶形调控基因[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 39-46. |
[6] | 杨蕴力, 曹俐, 王阳, 顾宸瑞, 陈坤, 刘桂丰. BpGLK1基因干扰表达对裂叶桦叶色及生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 18-28. |
[7] | 王伟, 邱志楠, 李爽, 白向东, 刘桂丰, 姜静. CRISPR/Cas9核糖核蛋白介导的无T-DNA插入的白桦BpGLK1精准突变[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 11-17. |
[8] | 国颖, 杨港归, 吴雨涵, 何杰, 何玉洁, 廖浩然, 薛良交. DNA甲基化调控植物组织培养过程的分子机制研究进展[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 1-8. |
[9] | 陈俊娜, 王晓宇, 陈晨, 彭辉武, 陈娟, 黄卫和, 喻方圆. BR对东京野茉莉种子中脂肪酸合成相关酶活性及油脂积累的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 35-41. |
[10] | 宫楠, 祖鑫, 解志军, 朱长红, 李淑娴. 紫荆种子吸胀和层积过程中不同相态水分变化的核磁共振检测[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 42-50. |
[11] | 王章荣, 季孔庶, 徐立安, 邹秉章, 林能庆, 林景泉. 马尾松实生种子园营建技术、现实增益及多世代低成本经营新模式探讨[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 9-16. |
[12] | 欧阳, 欧阳芳群, 孙猛, 王超, 王军辉, 安三平, 王丽芳, 许娜, 王猛. 欧洲云杉无性系幼龄生长节律、年度和密度互作效应及选择策略[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 95-104. |
[13] | 罗芊芊, 李峰卿, 肖德卿, 邓章文, 王建华, 周志春. 两个南方红豆杉天然居群的交配系统分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 80-86. |
[14] | 郭伟, 韩秀, 张利, 王迎, 杜辉, 燕语, 孙忠奎, 张林, 李国华, 罗磊. 青檀扦插苗对不同氮素水平的形态、光合生理响应和转录组分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 87-96. |
[15] | 刘蓉, 吴德军, 王因花, 任飞, 李丽, 燕丽萍, 周晓锋. 白蜡花粉最佳离体萌发培养基筛选[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 70-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||