南京林业大学学报(自然科学版) ›› 2013, Vol. 37 ›› Issue (06): 147-152.doi: 10.3969/j.issn.1000-2006.2013.06.029
甄 艳,陈金慧,施季森*
出版日期:
2013-12-18
发布日期:
2013-12-18
基金资助:
ZHEN Yan, CHEN Jinhui, SHI Jisen*
Online:
2013-12-18
Published:
2013-12-18
摘要: 植物体细胞胚胎发生(简称体胚发生)是细胞全能性的体现。在适宜的培养体系下,植物的体细胞理论上均存在脱分化启动胚发育进程的可能。尽管体胚发生这一生物学发育进程的报道已有50多年的历史,但仍有一些重要的科学问题还未得到完全阐明,例如成熟外植体胚性能力恢复的机理、外源/内源因子如何调控胚性能力获得、胚性获得的关键分子途径、胚性获得调控的信号网络等。笔者综述了体胚能力恢复的诱导因子、生理生化标记、调控基因、miRNA调控和蛋白质组特征等方面的研究进展。
中图分类号:
甄艳,陈金慧,施季森. 植物体细胞胚发生胚性潜势恢复的研究进展[J]. 南京林业大学学报(自然科学版), 2013, 37(06): 147-152.
ZHEN Yan, CHEN Jinhui, SHI Jisen. Research progress on the reacquisition of embryogenic potentiality in plant somatic embryogenesis[J].Journal of Nanjing Forestry University (Natural Science Edition), 2013, 37(06): 147-152.DOI: 10.3969/j.issn.1000-2006.2013.06.029.
[1] Hermann v Guttenberg. Kulturversuche mit isolierten Pflanzenzellen[J]. Planta, 1943, 33(4):576-588. [2] Vogel G. How does a single somatic cell become a whole plant [J]. Science, 2005, 309(5731):86. [3] Jimenez V M. Regulation of in vitro somatic embryogenesis with emphasis on to the role of endogenous hormones [J]. Revista Brasileira de Fisiologia Vegetal, 2001, 13(2):196-223. [4] Wang X, Nolan K E, Irwanto R R,et al. Ontogeny of embryogenic callus in Medicago truncatula: the fate of the pluripotent and totipotent stem cells [J]. Annals of Botany, 2011, 107(4):599-609. [5] Cooke T J, Racusen R H,Cohen J D. The role of auxin in plant embryogenesis [J]. The Plant Cell, 1993, 5(11): 1494-1495. [6] 张金凤,方升佐,尚旭兰,等.青钱柳幼胚愈伤组织的诱导[J].南京林业大学学报:自然科学版,2012,36(5):47-50. Zhang J F, Fang S Z, Shang X L,et al. Callus induction from young embryos of Cyclocarya paliurus[J]. Journal of Nanjing Forestry University:Natural Sciences Edition,2012,36(5):47-50. [7] Sagare A P, Lee Y L, Lin T C, et al. Cytokinin-induced somatic embryogenesis and plant regeneration in Corydalis yanhusuo(Fumariaceae)-a medicinal plant. [J]. Plant Science, 2000, 160(1): 139-147. [8] Kuo C L, Sagare A P, Lo S F, et al. Abscisic acid promotes development of somatic embryos on converted somatic embryos of Corydalis yanhusuo(Fumariaceae)[J]. Journal of Plant Physiology, 2002, 159(4): 423-427. [9] Jimenez V M. Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis [J]. Plant Growth Regulation, 2005, 47(2-3): 91-110. [10] Yang X, Zhang X. Regulation of somatic embryogenesis in higher plants [J]. Critical Reviews in Plant Science, 2010, 29(1): 36-57. [11] Matsubayashi Y. Recent progress in research on small post-translationally modified peptide signals in plants [J]. Genes to Cells, 2012, 17: 1-10. [12] Zhang J, Mab H, Chen S, et al. Stress response proteins’ differential expression in embryogenic and non-embryogenic callus of Vitis vinifera L. cv. Cabernet Sauvignon—a proteomic approach [J]. Plant Science, 2009, 177(2): 103-113. [13] Karami O, Saidi A. The molecular basis for stress-induced acquisition of somatic embryogenesis [J]. Molecular Biology Reports, 2010, 37(5): 2493-2507. [14] Halperin W. Alternative morphogenetic events in cell suspensions [J]. American Journal of Botany, 1966, 53(5): 443-453. [15] Jones T J, Rost T L. The developmental anatomy and ultrastructure of somatic embryos from rice(Oryza sativa L.)scutellum epithelial cells[J]. Botanical Gazette, 1989, 150(1): 41-49. [16] Garrido D, Vicente O, Heberle-Bors E, et al. Cellular changes during the acquisition of embryogenic potential in isolated pollen grains of Nicotiana tabacum [J]. Protoplasma, 1995, 186(3-4): 220-230. [17] Pedroso M C, Pais M S. Factors controlling somatic embryogenesis[J]. Plant Cell, Tissue and Organ Culture, 1995, 43(2): 147-154. [18] De Jong A J, Schmidt E D,de Vries S C. Early events in higher-plant embryogenesis [J]. Plant Molecular Biology, 1993, 22(2): 367-377. [19] Smith D L, Krikorian A D. pH control of carrot somatic embryogenesi[C]//Nijkamp H J J, van der Plas L H W, Van Aartrijk J. Progress in Plant Cellular and Molecular Biology. Netherlands: Kluwer Academic Publishers, 1990. [20] Komamine A, Matsumoto M, Tsukahara M, et al., Mechanisms of somatic embryogenesis in cell cultures-physiology, biochemistry and molecular biology[C]// Nijkamp H J J, Van Derplo L H N, Van Aortrijk J. Progress in Plant Cellular and Molecular Biology.Netherlands: Kluwer Acad emic Publisher, 1990. [21] Pasternak T P, Prinsen E, Ayaydin F, et al. The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa [J]. Plant Physiology, 2002, 129(4): 1807-1819. [22] Fransz P F, Schel J H N. An ultrastructure study on the early development of Zea mays somatic embryos [J]. Canadian Journal of Botany, 1991, 69(4): 858-865. [23] Namasivayam P, Skepper J, Hanke D. Identification of a potential structural marker for embryogenic competency in the Brassica napus spp. oleifera embryogenic tissue [J]. Plant Cell Reports, 2006, 25(9): 887-895. [24] De Jong A J, Hendriks T, Meijer E A, et al. Transient reduction in secreted 32 KD chitinase prevents somatic embryogenesis in the carrot(Daucus carota L)variant ts11 [J]. Developmental Genetics, 1995, 16(4): 332-343. [25] van Hengel A J, Tadesse Z, Immerzeel P, et al. N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis [J]. Plant Physiology, 2001, 125(4): 1880-1890. [26] Karami O, Aghavaisi B, Mahmoudi Pour A. Molecular aspects of somatic-to-embryogenic transition in plants [J]. Journal Chemical Biology, 2009, 2(4): 177-190. [27] 石雅丽, 张锐, 林芹,等. 植物体细胞胚胎发生受体类蛋白激酶的生物学功能 [J]. 遗传, 2012, 34(5): 669-673. Shi Y L, Zhang R, Lin Q, et al. Biological function of the somatic embryogenesis receptor-like kinases in plant[J]. Hereditas, 2012, 34(5): 669-673. [28] 魏丕伟. 杂交鹅掌楸体细胞胚胎发生标志基因克隆及表达分析[D]. 南京:南京林业大学,2009. Wei P W. Isolation and expression analysis of the marker genes related to somatic embryogenesis of Liriodendron hybrids[D]. Nanjing:Nanjing Forestry University,2009. [29] 高燕, 席梦利, 王桂凤,等. 马尾松体细胞胚胎发生相关基因PmSERK1 的克隆与表达分析 [J]. 分子植物育种, 2010, 8(1): 53-58. Gao Y,Xi M L,Wang G F,et al. Molecular characterization and expression analysis of PmSERKl during somatic embryogenesis in masson pine[J].Molecular Plant Breeding, 2010, 8(1): 53-58. [30] Namasivayam P. Acquisition of embryogenic competence during somatic embryogenesis [J]. Plant Cell Tissue Organ Culture, 2007, 90(1): 1-8. [31] Zhang B H, Pan X P, Cobb G P, et al. Plant microRNA: A small regulatory molecule with big impact [J]. Developmental Biology, 2006, 289(1): 3-16. [32] Luo Y C, Zhou H, Li Y, et al. Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development [J]. Febs Letters, 2006, 580(21): 5111-5116. [33] Zhang S, Zhou J, Han S, et al. Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis[J]. Biochemical and Biophysical Research Communications, 2010, 398(3): 355-360. [34] Li T, Chen J, Qiu S, et al. Deep sequencing and microarray hybridization identify conserved and species-specific microRNAs during somatic embryogenesis in hybrid yellow poplar [J]. Plos One, 2012, 7(8):e43451. [35] Zhang J, Zhang S, Han S, et al. Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis [J]. Planta, 236(2): 647-657. [36] Chen C J, Liu Q, Zhang Y C, et al. Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus [J]. Rna Biology, 8(3): 538-547. [37] Lyngved R, Renaut J, Hausman J F, et al. Embryo-specific proteins in Cyclamen persicum analyzed with 2-D DIGE [J]. Journal of Plant Growth Regulation, 2008, 27(4): 353-369. [38] Nogueira F C S, Goncalves E F, Jereissati E S, et al. Proteome analysis of embryogenic cell suspensions of cowpea(Vigna unguiculata)[J]. Plant Cell Reports, 2007, 26(8): 1333-1343. [39] Marsoni M, Bracale M, Espen L, et al. Proteomic analysis of somatic embryogenesis in Vitis vinifera [J]. Plant Cell Reports, 2008, 27(2): 347-356. [40] Yin L, Tao Y, Zhao K, et al. Proteomic and transcriptomic analysis of rice mature seed-derived callus differentiation [J]. Proteomics, 2007, 7(5): 755-768. [41] Kreuger M, Holst G J. Arabinogalactan proteins are essential in somatic embryogenesis of Daucus carota L. [J]. Planta, 1993, 189(2): 243-248. [42] Egertsdotter U, Von Arnold S. Importance of arabinogalactan proteins for the development of somatic embryos of Norway spruce(Picea abies)[J]. Physiologia Plantarum, 1995, 93(2): 334-345. [43] Namasivayam P, Skepper J N, Hanke D. Distribution of arabinogalactan protein(AGP)epitopes on the anther-derived embryoid cultures of Brassica napus [J]. Pertanika Journal of Tropical Agricultural Science, 2010, 33(2): 303-313. [44] Acosta-Garcia G, Vielle-Calzada J P. A classical arabinogalactan protein is essential for the initiation of female gametogenesis in Arabidopsis [J]. Plant Cell, 2004, 16(10): 2614-2628. [45] Caliskan M, Turet M,Cuming A C. Formation of wheat(Triticum aestivum L.)embryogenic callus involves peroxide-generating germin-like oxalate oxidase [J]. Planta, 2004, 219(1): 132-140. [46] Domon J M, Dumas B, Laine E, et al. Three glycosylated polypeptides secreted by several embryogenic cell cultures of pine show highly specific serological affinity to antibodies directed against the wheat germin apoprotein monomer [J]. Plant physiology, 1995, 108(1): 141-148. [47] Imin N, De Jong F, Mathesius U, et al. Proteome reference maps of Medicago truncatula embryogenic cell cultures generated from single protoplasts [J]. Proteomics, 2004, 4(7): 1883-1896. [48] Imin N, Nizamidin M, Daniher D, et al. Proteomic analysis of somatic embryogenesis in Medicago truncatula: Explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments [J]. Plant Physiology, 2005, 137(4): 1250-1260. [49] Zhen Y, Zhao Z Z, Zheng R H, et al. Proteomic analysis of early seed development in Pinus massoniana L [J]. Plant Physiology and Biochemistry, 2012, 54: 97-104. [50] Sterk P, Booij H, Schellekens G A, et al. Cell-specific expression of the carrot EP2 lipid transfer protein gene [J]. The Plant Cell, 1991, 3(9): 907-21. [51] Thoma S, Hecht U, Kippers A, et al. Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis[J]. Plant Physiology, 1994, 105(1): 35-45. [52] Chugh A, Khurana P. Gene expression during somatic embryogenesis-recent advances [J]. Current Science, 2002, 83(6): 715-730. [53] Tchorbadjieva M I, Kalmukova R I, Pantchev I Y, et al. Monoclonal antibody against a cell wall marker protein for embryogenic potential of Dactylis glomerata L. suspension cultures [J]. Planta, 2005, 222(5): 811-819. [54] Rose R J, Mantiri F R, Kurdyukov S. The developmental biology of somatic embryogenesis[C]//Pua E C, Davey M R. Plant Developmental Biology: Biotechnology Perspectives. Berlin: Springer-Verlag, 2010. [55] Fehér A. The initiation phase of somatic embryogenesis: what we know and what we don’t [J]. Acta Biologica Szegediensis, 2008, 52(1): 53-56. |
[1] | 许慧慧, 班卓, 王晨雪, 毕泉鑫, 刘肖娟, 王利兵. 文冠果BZR1基因家族鉴定及功能分析[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 12-22. |
[2] | 戚亚, 王改萍, 轩辕欣彤, 彭大庆, 李硕民, 李守科, 曹福亮. 文冠果药用优良无性系评价[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 38-44. |
[3] | 陈升侃, 郭东强, 邓紫宇, 唐庆兰, 廖长琨, 杨植旺, 朱原立, 李昌荣. 斑皮柠檬桉种源树高生长稳定性评价[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 67-74. |
[4] | 姚俊修, 任飞, 王因花, 李庆华, 燕丽萍, 郑岩, 吴德军. 基于荧光SSR标记的接骨木种质资源遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 75-82. |
[5] | 柯欣, 费琪, 夏馨蕊, 叶建仁, 朱丽华. 抗松针褐斑病湿地松胚性愈伤组织诱导及体胚产量影响因素的研究[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 87-94. |
[6] | 林强, 徐进, 李上前, 林云斌, 章允清, 欧阳磊. 福建福鼎柳杉种子园半同胞子代遗传变异分析与早期选择[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 78-86. |
[7] | 姜波, 安新民. 基因组精准编辑技术及其在林木育种中的应用[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 11-20. |
[8] | 张伟溪, 丁密, 苏晓华, 李爱平, 王小江, 余金金, 李政宏, 黄秦军, 丁昌俊. 小叶杨×欧洲黑杨杂交F1代生长及叶片解剖结构杂种优势分析与抗旱性评价[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 46-58. |
[9] | 杨袁木, 李娜, 陈新宇, 徐放, 潘文, 张卫华. 红锥种源与无性系的材性变异研究[J]. 南京林业大学学报(自然科学版), 2024, 48(6): 41-50. |
[10] | 闫平玉, 张磊, 王佳兴, 冯可乐, 王浩浩, 张含国. 红松天然种群遗传多样性分析及核心种质构建[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 69-80. |
[11] | 王佳兴, 闫平玉, 孙佰飞, 刘劲宏, 冯可乐, 张含国. 长白落叶松自由授粉家系生长变异及优良家系早期选择[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 81-89. |
[12] | 匡泽宇, 彭冶, 方炎明. 铁冬青花挥发性化合物对中华蜜蜂访花的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 254-260. |
[13] | 刘莉, 瞿印权, 余延浩, 王倩, 洑香香. 青钱柳全基因组SSR位点分析及多态性引物开发[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 67-75. |
[14] | 刘夏岚, 宋子琪, 胡凤荣, 尚旭岚. 青钱柳二倍体和四倍体叶特征比较研究[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 76-84. |
[15] | 马坛, 田野, 王书军, 李文昊, 段启英, 张庆源. 不同性别南方型黑杨无性系叶片对土壤短期间歇性干旱的生理响应[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 172-180. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||