杉木EST-SSR与基因组SSR引物开发

徐阳,陈金慧,李亚,洪舟,王颖,赵亚琦,王新民,施季森

南京林业大学学报(自然科学版) ›› 2014, Vol. 38 ›› Issue (01) : 9-14.

PDF(1753194 KB)
PDF(1753194 KB)
南京林业大学学报(自然科学版) ›› 2014, Vol. 38 ›› Issue (01) : 9-14. DOI: 10.3969/j.issn.1000-2006.2014.01.002
专题报道

杉木EST-SSR与基因组SSR引物开发

  • 徐 阳,陈金慧,李 亚,洪 舟,王 颖,赵亚琦,王新民,施季森*
作者信息 +

Development of EST-SSR and genomic-SSR in Chinese fir

  • XU Yang, CHEN Jinhui, LI Ya, HONG Zhou, WANG Ying, ZHAO Yaqi, WANG Xinmin, SHI Jisen*
Author information +
文章历史 +

摘要

利用已经公布的杉木444条EST序列和未公布的杉木基因组文库中1 142条基因序列,进行引物开发效率的比较。去冗余后,利用MISA 搜索SSR 位点,分别得到109个和39个含有SSR的 位点。杉木EST序列中SSR分布密度为964.58个/Mbp,基因组中平均每Mbp出现1 037.24个SSR。在两个独立来源的数据库序列中,六核苷酸重复均为最多的重复类型,且AT-rich的重复类型占较大比例。AGC/CTG是杉木EST序列和基因组库中最多的三碱基重复,通过Primer 3.0分别设计出SSR引物95对和37对。为考察设计引物在杉木不同种源(群体)中的有效性,取12个种源(个体)的优良个体, 利用随机抽取的10个EST-SSR和8个gSSR(基因组SSR)进行引物筛选,结果表明:EST-SSR和gSSR各有4对引物在12个种源(个体)中表现出明显的多态性,多态率分别为40%和50%。8对多态性的SSR引物共扩增出 25 个多态性等位位点,平均每个引物产生 3.125 个多态性等位位点,平均有效的等位位点为2.399 5,PIC平均值为0.519 1; Hot平均为0.307 4。其中gSSR标记在检测群体间存在较大的分化,4个gSSR比4个EST-SSR扩增出更多的等位位点数、平均等位位点数,以及更大的PIC值。

Abstract

In order to develop SSR primers of Cunninghamia lanceolata(Lamb.)Hook based on EST-SSR and genomic SSR, 292 non-repeated Chinese fir EST-sequences were assembled by removing low-quality and redundant fragments depend upon 444 ESTs sequences from NCBI Public database, and 143 genome-sequences were assembled by removing redundant fragments in 1 142 genome sequences. All those non-redundant sequences of Cunninghamia lanceolata(Lamb.)Hook was searched for mono-to hexa-nucleotide simple sequence repeats(SSR or microsatellite)with software MISA, and the type,size and frequency of these SSRs were determined. Totally, There were 109 SSRs to be picked out among EST-sequences, the distribution density was 964.58 SSR/Mbp; and 39 SSRs were found in genome sequences, accounting for the higher density of 1 037.24 SSR/Mbp. In both Genomic and EST sequence library, the Hexanucleotides repeats, especially AT-rich repeat, was the most repeated type, and the AGC/CTG was the most trinucleotides repeats, The 37 and 95 pairs of SSR primers were designed based on EST library and Genomic by Primer 3.0, respectively. Ten EST-SSR primers and eight pairs of gSSR primers were selected randomly to perform PCR amplification with 12 individuals. There were four pairs of primers showed polymorphism both in EST-SSR and gSSR, with polymorphic rate of 40% and 50%, respectively. Twenty-five polymorphic alleles were amplified by 8 SSR primer pairs, which showed an average 3.125 polymorphism alleles for each primer, the average effective alleles(Na)2.399 5, average PIC 0.519 1, average Hot 0.307 4. There were more polymorphism alleles from gSSR markers than EST-SSR among groups. More allelic loci were amplified with four pairs of primer from gSSR than the four pairs of primer from EST-SSR, and the former had higher PIC value also.

引用本文

导出引用
徐阳,陈金慧,李亚,洪舟,王颖,赵亚琦,王新民,施季森. 杉木EST-SSR与基因组SSR引物开发[J]. 南京林业大学学报(自然科学版). 2014, 38(01): 9-14 https://doi.org/10.3969/j.issn.1000-2006.2014.01.002
XU Yang, CHEN Jinhui, LI Ya, HONG Zhou, WANG Ying, ZHAO Yaqi, WANG Xinmin, SHI Jisen. Development of EST-SSR and genomic-SSR in Chinese fir[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2014, 38(01): 9-14 https://doi.org/10.3969/j.issn.1000-2006.2014.01.002
中图分类号: S722    Q81   

参考文献

[1] 叶志宏, 施季森, 翁玉榛, 等. 杉木地理种源变异模式[J]. 南京林业大学学报, 1990, 14(4):15-22.Ye Z H, Shi J S, Weng Y Z, et al. The geographical provenance variation pattern of Cunninghamia lanceolata[J]. Journal of Nanjing Forestry University, 1990, 14(4):15-22.
[2] 施季森, 叶志宏, 翁玉榛, 等. 杉木生长与材性联合遗传改良研究[J].南京林业大学学报, 1993, 17(1):1-8.Shi J S, Ye Z H, WengY Z, et al. Research on the joint genetic improvement of growth and wood properties in Chinese fir(Cunninghamia lanceolata(Lamb.)Hook.)[J]. Journal of Nanjing Forestry University, 1993, 17(1):1-8.
[3] 施季森. 福建省杉木遗传改良现状与发展技术对策[J]. 福建林业科技, 1994,21(3):28-31.Shi J S. The present situation of Chinese fir genetic improvement in Fujian province and the technical countermeasures of developing it[J]. Journal of Fujian Forestry Science and Technology, 1994,21(3):28-31.
[4] 郑仁华, 施季森. 福建省杉木良种繁育现状与对策[J]. 林业科技开发, 2004, 18(2):3-7.Zheng R H, Shi J S. The present situation and the counter measures of Cunninghamia lanceolata breeding in Fujian province[J]. China Forestry Science and Technology, 2004,18(2):3-7.
[5] 郑仁华, 施季森. 福建杉木良种繁育现状与展望[R].南宁:第三届南方林木育种研讨会, 2006.
[6] 施季森. 林木生物技术育种未来10年若干科学问题展望[J]. 南京林业大学学报:自然科学版, 2012, 36(5):1-13.Shi J S. Prospection on some topics of forest genetic improvement through modern biotechnology for the next-ten-years in China[J]. Journal of Nanjing Forestry University:Natural Sciences Edition. 2012, 36(5):1-13.
[7] Morgante M, Olivieri M. PCR-amplified microsatellites as markers in plant genetics[J]. Plant J, 1993, 3(1):175-182.
[8] Varshney R K, Graner A, Sorrells M E. Genic microsatellite markers in plants:features and applications[J]. Trends in Biotechnology, 2005, 23(1):48-55.
[9] Prakash C Sharma, Grover A, Gunter K. Mining microsatellites in eukaryotic genomes[J]. Trends in Biotechnology, 2007, 25(11):490-498.
[10] Wang G F, Gao Y, Yang L, et al. Identification and analysis of differentially expressed genes in differentiating xylem of Chinese fir(Cunninghamia lanceolata)by suppression subtractive hybridization[J]. Genome, 2007, 50(12):1141-1155
[11] 李亚. 杉木CpG文库的构建及全基因组DNA甲基化检测[D]. 南京:南京林业大学, 2011. Li Y. The construction of CpG library and genome-wide DNA methylation detection in Chinese fir[D]. Nanjing:Nanjing Forestry University, 2011.
[12] Doyle J. DNA protocols for plants CTAB total DNA isolation[C]//Hewitt G M, Johnston A. Molecular Techniques in Taxonomy. Berlin:Springer-Verlag, 1991.
[13] Yeh F C, Boyle T. Population genetic analysis of co-dominant and dominant markers and quantitative traits[J]. Belgian Journal of Botany, 1997,129:57
[14] Kimura M, Crow J F. The number of alleles that can be maintained in a finite population[J]. Genetics, 1964, 49:725-738.
[15] Yin T M, Zhang X Y, Gunter L E, et al. Microsatellite primer resource for Populus developed from the mapped sequence scaffolds of the Nisqually-1 genome[J]. New Phytologist, 2009,181:498-503
[16] Cavagnaro P F, Senalik D A, Yang L M, et al. Genome-wide characterization of simple sequence repeats in cucumber(Cucumis sativus L.)[J]. BMC Genomics, 2010, 11(1):569.
[17] Echt C S, Saha S, Deemer D L, et al. Microsatellite DNA in genomic survey sequences and UniGenes of loblolly pine[J]. Tree Genetics & Genomes, 2011, 7(4):773-780.
[18] Berube Y, Zhuang J, Rungis D, et al. Characterization of EST SSRs in loblolly pine and spruce[J]. Tree Genetics & Genomes, 2007, 3(3):251-259.
[19] 樊洪泓, 李廷春, 李正鹏, 等. 银杏EST序列中微卫星的分布特征[J]. 基因组学与应用生物学, 2009, 5(5):869-873.Fan H H, Li T C, Li Z P, et al. Characteristics of microsatellite in ginkgo EST sequences[J]. Genomics and Applied Biology, 2009, 5(5):869-873.
[20] Cho Y G, Ishii, Temnykh S, et al. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice(Oryza sativa)[J]. Theor Appl Genet, 2000, 100(7):13-722.
[21] Eujayl I, Sorrells M, Baum M, et al. Assessment of genotypic variation among cultivated durum wheat based on EST-SSRS and genomic SSRS[J]. Euphytica, 2001, 119(1-2):39-43.
[22] Tuskan G A, Gunter L E, Yang, et al. Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa [J]. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 2004, 34(1):85-93.
[23] Dutta S, Kumawat G, Singh B P, et al. Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea[Cajanus cajan (L.)Millspaugh][J]. BMC Plant Biol, 2011, 11(1):17.
[24] Heuertz M, De Paoli E, Kallman T, et al. Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce[Picea abies(L.)Karst][J]. Genetics, 2006, 174(4):2095-2105.
[25] Li X G, Wu H X, Southerton S G. Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants[J]. BMC Evolutionary Biology, 2010, 10:190.
[26] Nystedt B, Street N R, Wetterbom A, et al. The Norway spruce genome sequence and conifer genome evolution[J]. Nature, 2013, 497(7451):579-84.
[27] Buschiazzo E, Ritland C, Bohlmann J, et al. Slow but not low:genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms[J]. BMC Evolutionary Biology, 2012, 12(1):8.
[28] Liewlaksaneeyanawin C, Ritland C E, El-Kassaby Y A, et al. Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs[J]. Theoretical and Applied Genetics, 2004,109(2):361-369.
[29] Chagne D, Chaumeil P, Ramboer A, et al. Cross-species transferability and mapping of genomic and cDNA SSRs in pines[J]. Theoretical and Applied Genetics, 2004, 109(6):1204-1214.
[30] Rungis D, Berube Y, Zhang J, et al. Robust simple sequence repeat markers for spruce(Picea spp.)from expressed sequence tags[J]. Theoretical and Applied Genetics, 2004,109(6):1283-1294.
[31] Rajora O P, Rahman M H, Dayanandan S, et al. Isolation, characterization, inheritance and linkage of microsatellite DNA markers in white spruce (Picea glauca)and their usefulness in other spruce species[J]. Mol Gen Genet, 2000,264:871-882.
[32] Moriguchi Y, Ueno S, Ujino-Ihara T, et al. Characterization of EST-SSRs from Cryptomeria japonica[J]. Conserv Genet Resour, 2009, 1(1):373-376.
[33] Li S X, Yin T M, Wang M X, et al. Characterization of microsatellites in the coding regions of the Populus genome [J]. Molecular Breeding, 2011, 27(1):59-66.
[34] Echt C S, Saha S, Krutovsky K V, et al. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers [J]. BMC Genetics, 2011, 12(1):17.

基金

收稿日期:2013-07-31 修回日期:2013-10-10
基金项目:国家林业公益性行业科研专项项目(201004049); 国家自然科学基金重点项目(30930077); 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:徐阳,博士生。*通信作者:施季森,教授。E-mail:jshi@njfu.edu.cn。
引文格式:徐阳,陈金慧,李亚,等. 杉木EST-SSR与基因组SSR引物开发[J]. 南京林业大学学报:自然科学版,2014,38(1):9-14.

PDF(1753194 KB)

Accesses

Citation

Detail

段落导航
相关文章

/