融入空间信息的湿地信息提取技术

王靖,吴见

南京林业大学学报(自然科学版) ›› 2014, Vol. 38 ›› Issue (04) : 19-22.

PDF(1929644 KB)
PDF(1929644 KB)
南京林业大学学报(自然科学版) ›› 2014, Vol. 38 ›› Issue (04) : 19-22. DOI: 10.3969/j.issn.1000-2006.2014.04.004
专题报道

融入空间信息的湿地信息提取技术

  • 王 靖,吴 见
作者信息 +

Wetland information extraction technology integrated by spatial information

  • WANG Jing, WU Jian
Author information +
文章历史 +

摘要

以安徽省湿地为对象,采用TM影像,在去噪声处理和主成分分析的基础上,以一种基于光谱和空间信息相结合的分类方法,对研究区的湿地信息进行了提取。结果表明:以主成分分析法对数据进行处理发现,前4个主成分的累积贡献率为99.5%,可代表原始数据的绝大部分信息; 结合空间信息的提取方法对各类型湿地的平均提取精度可达84.6%,有效地改善了“麻点”现象,而采用光谱信息的平均提取精度仅为69.3%。

Abstract

The wetlands in Anhui province were taken as research object, a method of classification based on spectral and spatial information was applied to extract wetland information in the study area, based on the TM image removed noise and principal component analysis. The results indicated that the accumulated contribution rate of the first four principal components was 99.5%, which could represent most of the original data information. The average classification accuracy of wetland information extraction technology integrated by spatial information was 84.6%, while the average classification accuracy of maximum likelihood method was only 69.3%. The wetland classification method of combining spatial information could effectively weaken the noises and improve a certain extent classification. This study has certain reference value on the other related research of wetland remote sensing information extraction based on spatial information.

引用本文

导出引用
王靖,吴见. 融入空间信息的湿地信息提取技术[J]. 南京林业大学学报(自然科学版). 2014, 38(04): 19-22 https://doi.org/10.3969/j.issn.1000-2006.2014.04.004
WANG Jing, WU Jian. Wetland information extraction technology integrated by spatial information[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2014, 38(04): 19-22 https://doi.org/10.3969/j.issn.1000-2006.2014.04.004
中图分类号: S757    TP79   

参考文献

[1] 周德民, 宫辉力, 胡金铭,等. 中国湿地卫星遥感的应用研究[J].遥感技术与应用, 2006, 21(6): 577-583.Zhou D M, Gong H L, Hu J M, et al. Application of satellite remote sensing technology to wetland research[J]. Remote Sensing Technology and Application, 2006, 21(6): 577-583.
[2] 汪爱华,张树清,何艳芬. RS和GIS支持下的三江平原沼泽湿地动态变化研究[J]. 地理科学, 2002, 22(5): 636-640.Wang A H, Zhang S Q, He Y F. Study on dynamic change of mire in Sanjiang Plain based on RS and GIS[J]. Scientia Geographica Sinica, 2002, 22(5): 636-640.
[3] Xue T X, Ye B, Liu J Y. A patch connectivity index and its change in relation to new wetland at the Yellow River Delta[J]. International Journal of Remote Sensing, 2004, 25(21): 4617-4628.
[4] Roshier D A, Rumbachs R M. Board-scale mapping of temporary wetlands in arid Australia[J]. Journal of Arid Environments, 2004, 56(2): 249-263.
[5] 白军红, 欧阳华, 杨志峰,等. 湿地景观格局变化研究进展[J]. 地理科学进展, 2005, 24(4): 36-45.Bai J H, Ouyang H, Yang Z F, et al. Changes in wetland landscape patterns: a review[J]. Progress in Geography, 2005, 24(4): 36-45.
[6] Tang J, Wang L, Zhang S. Investigating landscape pattern and its dynamics in Daqing, China[J]. International Journal of Remote Sensing, 2005, 26(11): 2259-2280.
[7] 宁龙梅, 王学雷, 吴后建. 武汉市湿地景观格局变化研究[J]. 长江流域资源与环境, 2005, 14(1): 44-49.Ning L M, Wang X L, Wu H J. Change of wetland ecology landscape pattern of Wuhan City by RS and GIS[J]. Resources and Environment in the Yangtze Basin, 2005, 14(1): 44-49.
[8] 夏双,阮仁宗,颜梅春,等.洪泽湖湿地类型变化分析[J]. 南京林业大学学报:自然科学版,2012, 36(1): 38-42.Xia S, Ruan R Z, Yan M C, et al. Analysis of long-term change in Hongze Lake wetlands[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2012, 36(1): 38-42.
[9] 耿修瑞,张霞,陈正超,等.一种基于空间连续性的高光谱图像分类方法[J]. 红外与毫米波学报,2004, 23(4): 299-302.Geng X R, Zhang X, Chen Z C, et al. Classification algorithm based on spatial continuity for hyperspectral image[J]. Journal of Infrared Millim Waves, 2004, 23(4): 299-302.
[10] 何山春,朱文中,吴小龙,等. 安徽湿地资源与湿地分类研究[J].安徽大学学报:自然科学版,2002, 26(2): 103-106.He S C, Zhu W Z, Wu X L, et al. Research on the resources and classification of wetlands in Anhui[J]. Journal of Anhui University: Natural Science Edition, 2002, 26(2): 103-106.
[11] 赵瑞锋, 周华荣, 肖笃宁,等. 塔里木河中下游地区湿地景观格局变化[J]. 生态学报, 2006, 26(10): 3470-3478.Zhao R F, Zhou H R, Xiao D N, et al. Changes of wetland landscape pattern in the middle and lower reaches of the Tarim River[J]. Acta Ecologica Sinica, 2006, 26(10): 3470-3478.
[12] 张传平,朱天松.主成分分析法在油田原油开采成本分析中的应用[J].石油大学学报:自然科学版,2002, 26(4): 101-103.Zhang C P, Zhu T S. Application of principal component analysis method on oil extraction cost[J]. Journal of the University of Petroleum, China, 2002, 26(4): 101-103.
[13] 姚焕玫,黄仁涛.主成分分析法在太湖水质富营养化评价中的应用[J].桂林工学院学报,2005,25(2): 245-251. Yao H M, Huang R T. Principal component analysis of water high eutrophication evaluation in Taihu Lake[J]. Journal of Guilin University of Technology, 2005,25(2): 245-251.
[14] Kim K, Jung K, Kin H J. Face recognition using kernel principle component analysis[J]. Signal Processing Letters, IEEE, 2002, 9(2): 40-42.
[15] Zhang L, Dong W S, ZHANG D, et al. Two stage image denoising by principal component analysis with local pixel grouping[J]. Pattern Recognition, 2010, 43(4): 1531-1549.

基金

收稿日期:2013-07-09 修回日期:2013-09-27
基金项目:虚拟地理环境教育部重点实验室开放基金项目(2012VGE02); 滁州学院科研启动基金项目(2012qd18); 安徽高等学校省级自然科学研究项目(KJ2013B189)
第一作者:王靖,讲师,博士。E-mail:wangjing_super@163.com。
引文格式:王靖,吴见. 融入空间信息的湿地信息提取技术[J]. 南京林业大学学报:自然科学版,2014,38(4):19-22.

PDF(1929644 KB)

Accesses

Citation

Detail

段落导航
相关文章

/