Research status and trend on wood dynamic viscoelastic properties
ZHAN Tianyi1, JIANG Jiali1, 2, LYU Jianxiong1*
Author information+
1.Key Laboratory of Wood Science and Technology of State Forestry Administration, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; 2. Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
Researches on wood dynamic viscoelastic properties are focused in recent years. Dynamic viscoelastic properties are helpful for investigating wood rheology and provide scientific instructions for wood industry. This paper reviewed the effects mechanism of anatomy structure, chemical composition and moisture on wood dynamic viscoelastic properties. For the anatomy structure, the emphases were concerning the species, stress wood, heart wood and sap wood, juvenile wood and mature wood, grain direction and earlywood and latewood as well as microfibril angle. For the chemical composition, the emphases were concerning elastic fiber, viscoelastic matrix and extractives. The dependence of moisture to dynamical viscoelastic properties were summarized in this paper. The suggestions for further study to wood dynamic viscoelastic properties were put forward.
ZHAN Tianyi, JIANG Jiali, LYU Jianxiong.
Research status and trend on wood dynamic viscoelastic properties[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2015, 39(02): 163-168 https://doi.org/10.3969/j.issn.1000-2006.2015.02.028
中图分类号:
S781
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Bodig J. Mechanics of wood and wood composites [M]. New York: Van Nostrand Reinhold Company, 1982. [2] 何曼君,陈维孝,董西侠. 高分子物理 [M]. 上海:复旦大学出版社, 2007. [3] 王逢瑚. 木质材料流变学 [M]. 哈尔滨:东北林业大学出版社, 2005. [4] 渡辺治人. 木材应用基础 [M]. 上海:上海科学技术出版社, 1984 [5] Becker H, Noack D. Studies on dynamic torsional viscoelasticity of wood [J]. Wood Science and Technology, 1968,2(3):213-230. [6] Jiang J L, Lu J X. Impact of temperature on the linear viscoelastic region of wood [J]. Canadian Journal of Forest Research, 2009,39(11):2092-2099. [7] Sun N J, Das S, Frazier C E. Dynamic mechanical analysis of dry wood: linear viscoelastic response region and effects of minor moisture changes [J]. Holzforschung,2007,61(1):28-33. [8] Placet V, Passard J, Perré P. Viscoelastic properties of wood across the grain measured under water-saturated conditions up to 135 ℃: evidence of thermal degradation [J]. Journal of Materials Science,2008,43(9):3210-3217. [9] Bag R, Beaugraud J, Dole P, et al. Viscoelastic properties of woody hemp core [J]. Holzforschung,2011,65(2):239-247. [10] Zhang T, Bai S L, Zhang Y F, et al. Viscoelastic properties of wood materials characterized by nanoindentation experiments [J]. Wood Science and Technology,2012,46(5):1003-1016. [11] Tanimoto T, Nakano T. Side-chain motion of components in wood samples partially non-crystallized using NaOH-water solution [J]. Materials Science and Engineering: C,2013,33(3):1236-1241. [12] Birkinshaw C, Buggy M, Henn G G. Dynamic mechanical analysis of wood [J]. Journal of Materials Science Letters,1986,5(9):898-900. [13] Placet V, Passard J, Perré P. Viscoelastic properties of green wood across the grain measured by harmonic tests in the range 0-95 ℃: Hardwood vs. softwood and normal wood vs. reaction wood [J]. Holzforschung,2007,61(5):548-557. [14] Brémaud I, Ka?m Y E, Guibal D, et al. Characterisation and categorization of the diversity in viscoelastic vibrational properties between 98 wood types [J]. Annals of Forest Science,2012,69(3):373-386. [15] Olsson A M, Salmén L. The effect of lignin composition on the viscoelastic properties of wood [J]. Nordic Pulp and Paper Research Journal,1997,12(3):140-144. [16] Havimo M. A literature-based study on the loss tangent of wood in connection with mechanical pulping [J]. Wood Science and Technology,2009,43(7-8):627-642. [17] Shupe T F, Groom L H, Eberhardt T L, et al. Selected mechanical and physical properties of Chinese tallow tree juvenile wood [J]. Forest Products Journal,2008,58(4):90-93 [18] Taghiyari H R, Karimi A N, Parsapajouh D, et al. Study on the longitudinal gas permeability of juvenile wood and mature wood [J]. Special Topics and Reviews in Porous Media-An International Journal,2010(1):31-38. [19] Bal B C, Bekta 瘙 塂 i. The effect of heat treatment on some mechanical properties of juvenile wood and mature wood of Eucalyptus grandis[J]. Drying Technology,2013,31(4):479-485. [20] Song K L, Yin Y F, Salmén L, et al. Changes in the properties of wood cell wall during the transformation from sapwood to heartwood [J]. Journal of Materials Science,2014,49(4):1734-1742. [21] Lenth C A. Wood material behavior in severe environments [D]. Virginia: Virginia State University,1999. [22] Backman A C, Lindberg K A H. Differences in wood material response for radial and tangential direction as measured by dynamic mechanical thermal analysis [J]. Journal of Materials Science,2001,36(15):3777-3783. [23] Gibson L J, Ashby M F. Cellular solids, structure and properties [M]. Oxford: Pergamon Press,1997. [24] Theocaris P S, Spathis G, Sideridis E. Elastic and viscoelastic properties of fibre-reinforced composite materials [J]. Fibre Science and Technology,1982,17(3):169-181. [25] Hoffmann G, Poliszko S. Temperature-frequency transformation in dielectric thermal analysis of wood relaxation properties [J]. Journal of Applied Polymer Science,1996,59(2):269-275. [26] Kelly S S, Rilas T G, Glasser W G. Relaxation behavior of amorphous components of wood [J]. Journal of Materials Science,1987,22(2):617-625. [27] Nakano T, Honma S, Matsumoto A. Physical properties of chemically-modified wood containing metal.Ⅰ. Effects of metal on dynamic mechanical properties of half-esterified wood [J]. Mokuzai Gakkaishi,1990,36(12):1063-1068. [28] Mano F J. The viscoelastic properties of cork [J]. Journal of Materials Science,2002,37(2):257-263. [29] Jiang J L, Lu J X. Anisotropic characteristics of wood dynamic viscoelastic properties [J]. Forest Products Journal,2009,59(7/8):59-64. [30] Norimoto M, Zhao G J. Dielectric-relaxation of water adsorbed on wood [J]. Mukuzai Gakkaishi,1993,39(3):249-257. [31] Hori R, Müller M, Watanaba U, et al. The importance of seasonal differences in the cellulose microfibril angle in softwoods in determining acoustic properties [J]. Journal of Materials Science,2002,37(20):4279-4284. [32] Obataya E, Norimoto M, Gril J. The effects of adsorbed water on dynamic mechanical properties of wood [J]. Polymer,1998,39(14):3059-3064. [33] Mukudai J, Yata S. Modeling and simulation of viscoelastic behavior(tensile strain)of wood under moisture change [J]. Wood Science and Technology,1986,20(4):335-348. [34] Mukudai J, Yata S. Further modeling and simulation of viscoelastic behavior(bending deflection)of wood under moisture change [J]. Wood Science and Technology,1987,21(1):49-63. [35] Kojima Y, Yamamoto H. Effect of microfibril angle on the longitudinal tensile creep behavior of wood [J]. Journal of Wood Science,2004,50(4):301-306. [36] Engelund E T, Salmén L. Tensile creep and recovery of Norway spruce influenced by temperature and moisture [J]. Holzforschung,2012,66(8):959-965. [37] Cave I D. The anisotropic elasticity of the plant cell wall [J]. Wood Science and Technology,1968,2(4):268-278. [38] Cave I D. The longitudinal Young’s modulus of Pinus radiate [J]. Wood Science and Technology,1969,3(1):40-48. [39] Salmén L. Micromechanical understanding of the cell-wall structure [J]. Comptes Rendus Biologies,2004,327(9/10):873-880. [40] Bonarski J T, Olek W. Texture function application for wood ultrastructure description. Part 1: theory [J]. Wood Science and Technology,2006,40(2):159-171. [41] Page D H, Elhosseiny F, Winkler K, et al. Elastic modulus of single wood pulp fibers [J]. Tappi,1977,60(4):114-117. [42] Donaldson L. Microfibril angle: measurement, variation and relationships: A review [J]. IAWA Journal,2008,29(4):345-386. [43] Norimoto M. Dieletric properties of wood [J]. Wood Research, 1976,59/60:106-152. [44] Kimura M, Nakano J. Mechanical relaxation of cellulose at low temperatures [J]. Journal of Polymer Science: Polymer Letters Edition,1976,14(12):741-745. [45] Toba K, Yamamoto H. On the mechanical interaction between cellulose microfibrils and matrix substances in wood cell wall: effects of chemical pretreatment and subsequent repeated dry-and-wet treatment [J]. Journal of Wood Science,2013,59(5):359-366. [46] Lindberg J J, Laanter? M. Hydrogen bonds and macromolecules: The interaction between wood cells and water [J]. Journal of Macromolecular Science,1996,33(10):1385-1388. [47] Salmén L, Olsson A M. Interaction between hemicelluloses, lignin and cellulose: structure-property relationships [J]. Journal of Pulp and Paper Science,1998,24(3):99-103. [48] Bergander A, Salmén L. Cell wall properties and their effects on the mechanical properties of fibers [J]. Journal of Materials Science,2002,37(1):151-156. [49] ?keroholm M, Salmén L. The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy [J]. Holzforschung,2003,57(5):459-465. [50] Sugiyama M, Obataya E, Norimoto M. Viscoelastic properties of the matrix substance of chemically treated wood [J]. Journal of Materials Science,1998,33(14):3505-3510. [51] Salmén L. Viscoelastic properties of in situ lignin under water-saturated conditions [J]. Journal of Materials Science,1984,19(9):3090-3096. [52] Minato K, Bremaud I, Suzuki S, et al. Extractives of muirapiranga(Brosimun sp.)and its effects on the vibrational properties of wood [J]. Journal of Wood Science,2010,56(1):41-46. [53] Matsunage M, Obataya E, Minato K, et al. Working mechanism of adsorbed water on the vibrational properties of wood impregnated with extractives of pernambuco(Guilandina echinata Spreng.)[J]. Journal of Wood Science,2000,46(2):122-129. [54] Yano H. The changes in the acoustic properties of western red cedar due to methanol extraction [J]. Holzforschung,1994,48(6):491-495. [55] Yano H, Kyou K, Furuta Y, et al. Acoustic properties of Brazilian rosewood used for guitar back plates [J]. Mokuzai Gakkaishi,1995,41(1):17-24. [56] Skarr C. Wood-water relations [M]. New York: Springer-verlag,1988. [57] 赵广杰. 木材细胞壁中吸着水的介电弛豫 [M]. 北京:中国林业出版社,2002. [58] Cousins W J. Elastic modulus of lignin as related to moisture content [J]. Wood Science and Technology,1976,10(1):9-17. [59] Cousins W J. Young’s modulus of hemicellulose as related to moisture content [J]. Wood Science and Technology,1978,12(3):161-167. [60] Hillis W E. High temperature and chemical effects on wood stability. Part 1. General considerations [J]. Wood Science and Technology,1984,18(4):535-542. [61] Furuta Y, Aizawa H, Yano H, et al. Thermal-softening properties of water-swollen. Ⅳ: The effects of chemical constituents of the cell wall on thermal-softening properties of wood [J]. Mokuzai Gakkaishi,1997,43(9):725-730. [62] 周兆兵,那斌,罗婉珺,等.速生杨木动态黏弹性与初始含水率的关系 [J]. 南京林业大学学报: 自然科学版,2011,35(6): 96-100.Zhou Z B, Na B, Luo W J, et al. Relationships between dynamic viscoelastic properties and initial moisture content of fast-growing poplar [J]. Journal of Nanjing Forestry University:Natural Sciences Edition,2011,35(6):96-100. [63] Obataya E, Yokuyama M, Norimoto M. Mechanical and dielectric relaxations of wood in a low temperature rangeⅠ. Relaxations due to methylol groups and adsorbed water [J]. Mokuzai Gakkaishi,1996,42(3):243-249. [64] Obataya E, Norimoto M, Tomita B. Mechanical relaxation process of wood in the low-temperature range [J]. Journal of Applied Polymer Science,2001,81(13):3338-3347. [65] Furuta Y, Obata Y, Kanayama K. Thermal-softening properties of water-swollen wood:the relaxation process due to water soluble polysaccharides [J]. Journal of Materials Science,2001,36(4):887-890. [66] 蒋佳荔,吕建雄. 木材动态粘弹性的含水率依存性 [J]. 北京林业大学学报,2006(S2):118-123. Jiang J L, Lü J X. Moisture dependence of the dynamic viscoelastic properties for wood [J]. Journal of Beijing Forestry University, 2006(S2): 118-123.