集约经营模式下毛竹的空间分布格局

顾琪,陈霜霜,彭悦,黄伟量,王舒悰,秦鹏,洪为,王福升

南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (01) : 162-168.

PDF(1618575 KB)
PDF(1618575 KB)
南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (01) : 162-168. DOI: 10.3969/j.issn.1000-2006.2016.01.026
研究简报

集约经营模式下毛竹的空间分布格局

  • 顾 琪,陈霜霜,彭 悦,黄伟量,王舒悰,秦 鹏,洪 为,王福升*
作者信息 +

Spatial distribution pattern of Phyllostachys edulis under the pattern of intensive farming

  • GU Qi, CHEN Shuangshuang, PENG Yue, HUANG Weiliang, WANG Shucong, QIN Peng, HONG Wei,WANG Fusheng*
Author information +
文章历史 +

摘要

为了解集约经营模式下,环境条件和自身密度法则对毛竹(Phyllostachys edulis)空间分布格局及其种群动态、品质与产量的影响,笔者在福建省永安市上坪山地长期集约性经营的毛竹林选择一块样地(40 m×15.5 m),对2008、2010、2012和2014年出土的毛竹进行区分,测定其空间位置,以异质性空间点格局分析方法重点研究2014年新竹相对于其余老竹的空间分布特点,同时测量了研究区域内毛竹个体的胸径,并采用广义可加模型分析了胸径在空间的分布类型是否呈现出随机化的特点。研究结果表明:毛竹在给定的距离尺度下表现为随机分布,同时毛竹胸径大小与毛竹的空间位置有关,毛竹分布的环境是异质性的,使用异质性空间点格局分析较为稳妥可靠。野外集约化经营模式下毛竹空间分布格局同样呈现出随机化分布的特点,而不是聚集性分布。毛竹在空间上出现是随机的,但是个体生物量大小的出现则与环境有关,提高毛竹产量和竹笋品质的关键在于改善土壤条件和选择毛竹的种植环境。

Abstract

The spatial distribution pattern of moso bamboo(Phyllostachys edulis)is generally limited by environmental conditions and self-thinning rule by itself. In order to understand the influences of the environment conditions and self-thinning rule on spatial distribution pattern, population dynamics, the productivity and quality of moso bamboo under the pattern of intensive farming, we sampled a 40 m×15.5 m plot on a mountain of Yongan City, Fujian Province, which was reckoned as a representative moso bamboo forest, used the heterogeneous spatial point pattern analysis method to check the distributional type of new moso bamboos in 2014 relative to old moso bamboos in 2008, 2010 and 2012, measured the spatial locations and the diameters at breast height(DBH)of moso bamboos, meanwhile used the generalized additive model(GAM)to check whether there was a relationship between the DBH of moso bamboos and the corresponding spatial locations. The results showed that the spatial distribution type of moso bamboo was random in a particular distance scale, and the DBH was significantly affected by the spatial locations of moso bamboo, which meant that the distributing environment of moso bamboo were heterogeneous. The biomasses of moso bamboo were related to environmental conditions, which implicated that it is important to improve the soil conditions and choose the plantation of moso bamboo for enhancing the productivity of moso bamboo and the quality of bamboo shoots. Thus, to use the inhomogeneous spatial point pattern analysis method is reasonable. The present study is of theoretical value for exploring the spatial distribution rule of moso bamboos, and it is also of practical value for operating moso bamboo forests.

引用本文

导出引用
顾琪,陈霜霜,彭悦,黄伟量,王舒悰,秦鹏,洪为,王福升. 集约经营模式下毛竹的空间分布格局[J]. 南京林业大学学报(自然科学版). 2016, 40(01): 162-168 https://doi.org/10.3969/j.issn.1000-2006.2016.01.026
GU Qi, CHEN Shuangshuang, PENG Yue, HUANG Weiliang, WANG Shucong, QIN Peng, HONG Wei,WANG Fusheng. Spatial distribution pattern of Phyllostachys edulis under the pattern of intensive farming[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2016, 40(01): 162-168 https://doi.org/10.3969/j.issn.1000-2006.2016.01.026
中图分类号: S718   

参考文献

[1] 程小飞. 上阔下竹复合生态系统类型划分的研究 [D]. 南京:南京林业大学, 2015:22. Cheng X F. Type classification of the broad-leaved forest in upper slope and bamboo plantation in lower slope compound ecosystem [D]. Nanjing:Nanjing Forestry University, 2015:22.
[2] Cheng X F, Shi P J, Hui C, et al. An optimal proportion of mixing broad-leaved forest for enhancing the effective productivity of moso bamboo [J]. Ecology and evolution, 2015, 5(8): 1576-1584.
[3] 时培建, 郭世权, 杨清培, 等. 毛竹的异质性空间点格局分析 [J]. 生态学报, 2010, 30(16): 4401-4407. Shi P J, Guo S Q, Yang Q P, et al. Inhomogeneous spatial point pattern analysis of moso bamboo(Phyllostachys edulis)[J]. Acta ecological sinica, 2010, 30(16): 4401-4407.
[4] Gatrell A C, Bailey T C, Diggle P J, et al. Spatial point pattern analysis and its application in geographical epidemiology [J]. Transactions of the institute of British geographers, 1996, 21(1): 256-274.
[5] Diggle P J. Statistical Analysis of spatial and spatio-temporal point patterns[M]. 3rd ed. London: Chapman & Hall/CRC, 2013:2.
[6] Diggle P J, Chetwynd A G. Second-order analysis of spatial clustering for inhomogeneous populations [J]. Biometrics, 1991, 47(3): 1155-1163.
[7] Silverman B W. Density estimation for statistics and data analysis [M]. London: Chapman & Hall/CRC, 1986.
[8] Nelder J, Wedderburn R W M. Generalized linear models [J]. Journal of the royal statistical society: series A, 1972, 135(3): 370-384.
[9] Hastie T, Tibshirani R. Generalized additive models(with discussion)[J]. Statistical science, 1986, 1(3): 297-318.
[10] Hastie T, Tibshirani R. Generalized additive models [M]. London: Chapman & Hall/CRC, 1990.
[11] Bailey T C, Gatrell A C.Interactive spatial data analysis [M]. New York: Longmam scientific & technical, 1995:2.
[12] Baddeley A J, Mller J, Waagepetersen R. Non-and semi-parametric estimation of interaction in inhomogeneous point patterns [J]. Statistica neerlandica, 2000, 54(3): 329-350.
[13] Guisan A, Edwards T C, Hastie T. Generalized linear and generalized additive models in studies of species distributions:setting the scene [J]. Ecological modelling, 2002, 157(2): 89-100.
[14] 姜汉桥,段昌群,杨树华,等.植物生态系[M].2版.北京:高等教育出版社,2010:2.
[15] 张金屯. 植物种群空间分布的点格局分析 [J]. 植物生态学报, 1998, 22(4): 344-349. Zhang J T. Analysis of spatial point pattern for plant species [J]. Acta phytoecologica sinica, 1998, 22(4): 344-349.
[16] 张金屯, 孟东平. 芦芽山华北落叶松林不同龄级立木的点格局分析 [J]. 生态学报, 2004, 24(1): 35-40. Zhang J T. Meng D P. Spatial pattern analysis of individuals in different age-classes of Larixprincipis-rupprechtii in Luya Mountain reserve, Shanxi, China [J]. Acta ecological sinica, 2004, 24(1): 35-40.
[17] Smith P G. Quantitative plant ecology [M]. 3rd ed.Oxford: Blackwell scientific publications, 1983.
[18] 刘淑燕, 岳永杰, 余新晓, 等. 北京山区刺槐林种群的空间点格局 [J]. 东北林业大学学报, 2010, 38(4): 33-36. Liu S Y, Yue Y J, Yu X X, et al. Spatial pattern of Robinia pseudoacacia plantation population in mountatinous area of Beijing [J]. Journal of Northeast Forestry University, 2010, 38(4): 33-36.
[19] 杨洪晓, 张金屯, 吴波, 等. 毛乌肃沙地油蒿种群点格局分析 [J]. 植物生态学报, 2006, 30(4): 563-570. Yang H B, Zhang J T, Wu B, et al. Point pattern analysis of Artemisia ordosica population in the Mu Us sandy land [J]. Journal of plant ecology, 2006, 30(4): 563-570.
[20] 刘振国, 李镇清. 不同放牧强度下冷蒿种群小尺度空间格局 [J]. 生态学报, 2004, 24(2): 227-234. Liu Z G, Li Z Q. Fine-scale spatial pattern of Artemisia frigida population under different grazing intensities [J]. Acta ecological sinica, 2004, 24(2): 227-234.
[21] 刘佳佳. 青藏高原高寒草甸草本植物的空间格局及其形成机制 [D]. 兰州:兰州大学, 2012:33-36. Liu J J. Spatial distribution patterns and the underlying mechanisms of the alpine meadow vegetation in Tibetan Plateau [D]. Lanzhou:Lanzhou University, 2012:33-36.
[22] 兰思仁. 武夷山天然毛竹林分布格局的研究 [J]. 福建林学院学报, 1995, 15(3): 277-280. Lan S R. The study of natural moso bamboo forest distribution pattern in Wuyi Mountain [J]. Journal of Fujian College of Forestry, 1995, 15(3): 277-280.
[23] 董文渊, 郑进烜, 陈冲. 海子坪天然毛竹无性系种群分布格局研究 [J]. 西北林学院学报, 2010, 25(1): 30-34. Dong W Y, Zheng J X, Chen C. Distribution pattern of natural Phyllostachy spubescens population in Haiziping [J]. Journal of Northwest Forestry University, 2010, 25(1): 30-34.
[24] Martíne Z I, Wiegand T, González-Taboada F, et al. Spatial associations among tree species in a temperate forest community in north-western Spain [J]. Forest ecology and management, 2010, 260(4): 456-465.
[24] Shi P J, Xu Q, Soudu H S, et al. Comparison of duarf bamboos(Indocalamus sp.)leaf parameters to determine relationship between spatial density of plants and total leaf area per plant[J]. Ecology and evolution,2015,5(20):4578-4589.
[25] 朱强根, 金爱武, 娄艳华, 等. 毛竹种群空间格局及分株间关联性—重复空间点格局分析 [J]. 世界竹藤通讯, 2014, 12(5): 1-7. Zhu Q G, Jin A W, Lou Y H, et al. Association between spatial patterns and ramets of Phyllostachy sheterocycla cv. Pubescens population using replicated spatial point patterns [J]. World bamboo and rattan, 2014, 12(5): 1-7.
[26] 洪伟, 郑康宏, 龚其锦. 毛竹在杉木与毛竹混交林中的空间分布型的研究 [J]. 竹子研究汇刊, 1990, 9(2): 56-64. Hong W, Zheng K H, Gong Q J. A study on the distribution pattern bamboo in the mixed forest of Chinese fir-bamboo [J]. Journal of bamboo research, 1990, 9(2): 56-64.
[27] 王微, 胡凯, 吴东琴, 等. 重庆地区毛竹分株种群结构特征研究 [J]. 竹子研究汇刊, 2008, 27(2): 17-19. Wang W, Hu K, Wu D Q, et al. Studies on the ramet population structure of the clonal moso bamboo in Chongqing [J]. Journal of bamboo research, 2008, 27(2): 17-19.
[28] 曹铭昌, 周广胜, 翁恩生. 广义模型及分类回归树在物种分布模拟中的应用和比较 [J]. 生态学报, 2005, 25(8): 2031-2040. Cao M C, Zhou G S, Weng E S. Application and comparison of generalized models and classification and regression tree in simulating tree species distribution [J].Acta ecological sinica, 2005, 25(8): 2031-2040.
[29] 朱源, 康幕谊. 排序和广义线性模型和广义可加模型在植物种与环境关系研究中的应用 [J]. 生态学杂志, 2005, 24(7): 807-811. Zhu Y, Kang M Y. Application of ordination and GLM/GAM in the research of the relationship between plant species and environment [J]. Chinese journal of ecology, 2005, 24(7): 807-811.
[30] 温仲明, 赫晓慧, 焦芳, 等. 延河流域本氏针茅(Stipabungeana)分布预测——广义相加模型及其应用 [J]. 生态学报, 2008, 28(1): 192-201. Wen Z M, He X H, Jiao F, et al. The predictive distribution of Stipabungeana in Yanhe River catchment: GAM model and its application [J]. Acta ecological sinica, 2008, 28(1): 192-201.
[31] 余黎, 雷相东, 王雅志. 基于广义可加模型的气候对单木胸径生长的影响研究 [J]. 北京林业大学学报, 2014, 36(5): 22-32. Yu L, Lei X D, Wang Y Z. Impact of climate on individual tree radial growth based on generalized additive model [J]. Journal of Beijing Forestry University,2014, 36(5): 22-32.
[32] 牛明香, 李显森, 须玉成. 基于广义可加模型的时空和环境因子对东南太平洋智利竹筴鱼渔场的影响 [J]. 应用生态学报, 2010, 21(4): 1049-1055. Niu M X, Li X S, Xu Y C. Effects of spatiotemporal and environment factors on the fishing ground of Trachurusmur-phyi in Southeast Pacific Ocean based on generalized additive model [J]. Chinese journal of applied ecology, 2010, 21(4): 1049-1055.

基金

收稿日期:2015-03-24 修回日期:2015-09-07
基金项目:国家林业公益性行业科研专项项目(201204106)
第一作者:顾琪(1012083836@qq.com)。*通信作者:王福升(fswang@njfu.edu.cn),副教授。
引文格式:顾琪,陈霜霜,彭悦,等. 集约经营模式下毛竹的空间分布格局[J]. 南京林业大学学报(自然科学版),2016,40(1):162-168.

PDF(1618575 KB)

Accesses

Citation

Detail

段落导航
相关文章

/