槲皮素作为荧光探针对醋酸根离子的识别作用

徐园园,杨世龙,姜维娜,赵俸艺,印彬,徐莉1,3,4*, 高步红,孙海军,杜丽婷,唐颖3,5,曹福亮1,5

南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (01) : 80-86.

PDF(1928830 KB)
PDF(1928830 KB)
南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (01) : 80-86. DOI: 10.3969/j.issn.1000-2006.2016.01.013
研究论文

槲皮素作为荧光探针对醋酸根离子的识别作用

  • 徐园园1,4,杨世龙1,2,姜维娜1,2,赵俸艺1,4,印 彬4,徐 莉1,3,4*, 高步红3,孙海军3,杜丽婷3,唐 颖3,5,曹福亮1,5
作者信息 +

A natural quercetin-based fluorescent sensor for sensitive and selective detection of acetate ions

  • XU Yuanyuan1,4, YANG Shilong1,2, JIANG Weina1,2, ZHAO Fengyi1,4, YIN Bin4, XU Li1,3,4*, GAO Buhong3, SUN Haijun3, DU Liting3, TANG Ying3,5, CAO
Author information +
文章历史 +

摘要

为了探讨天然产物槲皮素作为荧光探针检测醋酸根离子的选择性和灵敏性,实验将不同种类阴离子加入到槲皮素的二甲亚砜溶液中,考查槲皮素溶液的荧光强度变化。实验发现:槲皮素的二甲亚砜溶液在500 nm处有一荧光发射峰,加入醋酸根离子时,该峰强度明显增强,而其他阴离子(Cl-、Br-、I-、ClO-4、H2PO-4)对该峰强度无明显影响,同时在Q-Ac- 中加入其他阴离子未引起荧光强度的变化。表明槲皮素对醋酸根离子具有较好的选择性; 荧光滴定光谱表明槲皮素对醋酸根离子具有较高的灵敏度,且荧光滴定曲线线性关系较好(R2=0.995),线性范围为1.0×10-6~8.0×10-6 mol/L,最低检测限为1.0×10-7 mol/L; 通过Job曲线得到槲皮素与醋酸根离子作用的化学计量比为3:2,稳定常数为3.11×104。核磁等实验表明,醋酸根离子的加入破坏或减弱了体系原有的氢键,促进了槲皮素分子内电荷转移,使槲皮素的荧光强度增强。用该方法检测了样品中微量的醋酸根离子,回收率为98.82%~100.96%,测定结果稳定。

Abstract

A natural quercetin-based fluorescent sensor for sensitive and selective detection of acetate ions has been studied. Changes of fluorescence spectrum were studied before and after the addition of different anions in dimethyl sulfoxide(DMSO)solution of quercetin(Q), fluorescence emission intensity of Q increased obviously, acetate ions enhance fluorescence emission. And the fluorescence emission intensity had no change when adding other anions(Cl-,Br-,I-,ClO-4,H2PO-4). All suggested that the progress for detecting acetate ions will not be affected by other anions, and quercetin-based fluorescent sensor has good selectivity. The sensor Q can be applied to the quantification of acetate ions with a linear range of 1.0×10-6-8.0 × 10-6 mol/L and the detection limit of 1.0 × 10-7 mol/L. The stoichiometric ratio of Q and acetate ions was 3:2 obtained by Job's plot. The stability constant is 3.11×104. The 1H-NMR spectra of Q and Q-Ac- system showed a probable mechanism of quercetin recognition was that Ac- could destroy or weaken original hydrogen bonds, and promote charge transfer within quercetin molecule, which resulted in fluorescence intensity increasing. This method had been successfully applied in detecting acetate ions of samples in DMSO with good recovery(98.82%-100.96%)and repeatability.

引用本文

导出引用
徐园园,杨世龙,姜维娜,赵俸艺,印彬,徐莉1,3,4*, 高步红,孙海军,杜丽婷,唐颖3,5,曹福亮1,5. 槲皮素作为荧光探针对醋酸根离子的识别作用[J]. 南京林业大学学报(自然科学版). 2016, 40(01): 80-86 https://doi.org/10.3969/j.issn.1000-2006.2016.01.013
XU Yuanyuan, YANG Shilong, JIANG Weina, ZHAO Fengyi, YIN Bin, XU Li1,3,4*, GAO Buhong, SUN Haijun, DU Liting, TANG Ying3,5, CAO. A natural quercetin-based fluorescent sensor for sensitive and selective detection of acetate ions[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2016, 40(01): 80-86 https://doi.org/10.3969/j.issn.1000-2006.2016.01.013
中图分类号: O657.3   

参考文献

[1] Manju S, Jose L, Gopal T K S, et al. Effects of sodium acetate dip treatment and vacuum-packaging on chemical, microbiological, textural and sensory changes of Pearlspot(Etroplus suratensis)during chill storage[J]. Food chemistry, 2007, 102(1): 27-35.Doi:10.1016/j.foodchem.2006.04.037.
[2] Sallam K I. Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon[J]. Food control, 2007, 18(5): 566-575.Doi: 10.1016/j.foodcont.2006.02.002.
[3] Silveira E L C, Caland L B D, Tubino M. Simultaneous quantitative analysis of the acetate, formate, chloride, phosphate and sulfate anions in bidiesel by ion chromatography[J]. Fuel, 2014, 124(10): 97-101.Doi: 10.1016/j.fuel.2014.01.095.
[4] Zhou L, Dovletoglou A. Practical capillary electrophoresis method for the quantitation of the acetate counter-ion in a novel antifungal lipopeptide[J]. J chromatogr A, 1997, 763(1-2): 279-284.Doi:10.1016/S0021-9673(96)00982-X.
[5] Feng M Y, Jiang X Z, Dong Z Y, et al. Selective recognition of acetate ion by perimidinium-based receptors[J]. Tetrahedron lett, 2012, 53(46): 6292-6296.Doi: 10.1016/j.tetlet.2012.09.037.
[6] Gupta V K, Singh A K, Gupta N. Colorimetric sensor for cyanide and acetate ion using novel biologically active hydrazones[J]. Sensor actua: B, 2014, 204: 125-135.Doi: 10.1016/j.snb.2014.07.029.
[7] Qi X, Jun E J, Xu L, et al. New bodipy derivatives as off-on fluorescent chemosensor and fluorescent chemodosimeter for Cu2+: cooperative selectivity enhancement toward Cu2+[J]. J org chem, 2006, 71(7): 2881-2884.Doi: 10.1021/jo052542a.
[8] Qi X, Kim S K, Han S J, et al. New bodipy-triazine based tripod fluorescent systems[J]. Tetrahedron lett, 2008, 49(2): 261-264.Doi: 10.1016/j.tetlet.2007.11.063.
[9] Qi X, Kim S K, Jun E J, et al. A new bodipy derivative bearing piperazine group[J]. B kor chem soc, 2007, 28(12): 2231-2234.Doi: 10.1080/00032710701645828.
[10] Chen X W, Huang L L, Wang J H. Studies on the toluidine blue dimer as a fluorescence probe for protein assays[J]. Anal lett, 2007, 40(16-18): 3014-3024.Doi: 10.1016/j.talanta.2015.01.018.
[11] Chen Y B, Shi W, Hui Y H, et al. A new highly selective fluorescent turn-on chemosensor for cyanide anion[J]. Talanta, 2015, 137: 38-42.Doi: 10.1016/j.snb.2014.09.052.
[12] Chen Y H, Wang X, Yang X F, et al. Development of a ratiometric fluorescent probe for sulfite based on a coumarin-benzopyrylium platform[J]. Sensor actuat B:chem, 2015, 206(6): 268-275.Doi: 10.1080/00032711003698754.
[13] Ganjali M R, Faridbod F, Saboury A A, et al. Pico-level monitoring of ampicillin by using a novel cerium fluorescence probe[J]. Anal lett, 2010, 43(14): 2193-2199.Doi: 10.1016/j.molstruc.2013.04.077.
[14] Okudan A, Erdemir S, Kocyigit O. ‘Naked-eye' detection of fluoride and acetate anions by using simple and efficient urea and thiourea based colorimetric sensors[J]. J mol struct, 2013, 1048:392-398.Doi: 10.1016/j.jfluchem.2013.05.010.
[15] Reena V, Suganya S, Velmathi S. Synthesis and anion binding studies of azo-Schiff bases: Selective colorimetric fluoride and acetate ion sensors[J]. J of fluorine chem, 2013, 153(3): 89-95.Doi: 10.1002/bio.1354.
[16] Hosseini M, Ganjali M R, Veismohammadi B, et al. Selective recognition of acetate ion based on fluorescence enhancement chemosensor[J]. Luminescence, 2012, 27(5): 341-345.DOI: 10.1016/j.tetlet.2012.02.084.
[17] Kumar S, Singh P, Kumar S. 1-(2-Naphthalenyl)benzimidazolium based fluorescent probe for acetate ion in 90% aqueous buffer[J]. Tetrahedron lett, 2012, 53(17): 2248-2252.DOI: 10.1007/s10847-011-9995-5.
[18] Gong W T, Gao B, Bao S, et al. Selective “naked-eye” sensing of acetate ion based on conformational flexible amide-pyridinium receptor[J]. J Incl phenom macrocycl chem, 2012, 72(3-4):481-486.Doi: 10.1016/S0162-0134(00)00128-8.
[19] 张勇. 正交试验法优选槐花米中芸香苷水提取工艺[J]. 中国民族民间医药, 2013, 22(22): 10-11. Zhang Y. Optimization of water extraction process for rutin from Flos Sophoraes Immaturus by orthogonal design[J]. Chinese journal of ethnomedicine and ethnopharmacy, 2013, 22(22): 10-11.Doi:10.1155/2013/162750
[20] 王国霞, 曹福亮, 汪贵斌, 等. 不同地区银杏花粉黄酮和内酯含量的差异性[J]. 南京林业大学学报(自然科学版), 2007, 31(3): 34-38. Wang G X, Cao F L, Wang G B, et al. Comparative study on the contents of flavonoids and lactones in ginkgo pollen from different regions. Journal of Nanjing Forestry University(natural sciences edition), 2007, 31(3): 34-38.Doi: 10.1016/j.saa.2013.11.055.
[21] Zhou J, Wang L F, Wang J Y, et al. Synthesis, characterization, antioxidative and antitumor activities of solid quercetin rare earth(III)complexes[J]. J inorg biochem., 2001, 83(1): 41-48.Doi: 10.1002/bio.1128.
[22] Kumar S, Panaeag A K. Chemistry and biological activities of flavonoids: an overview[J]. The Scientific World Journal, 2013, 2013(4): 1-17.Doi: 10.1002/jssc.201301340.
[23] Liu P, Zhao L L, Wu X, et al. Fluorescence enhancement of quercetin complexes by silver nanoparticles and its analytical application[J]. Spectrochimica acta part A: molecular and biomolecular spectroscopy, 2014, 122(6): 238-245.
[24] Liu Y, Wu X, Zhou H P, et al. The fluorescence enhancement of quercetin-nucleic acid system and the analytical application[J]. Luminescence, 2009, 24(6): 416-421.
[25] 谢宝东, 王华田. 光质和光照时间对银杏叶片黄酮、内酯含量的影响[J]. 南京林业大学学报(自然科学版), 2006, 30(2): 51-54. Xie B D, Wang H T. Effects of light spectrum and photoperiod on contents of flavonoid and terpene in leaves of Ginkgo biloba L.[J]. Journal of Nanjing Forestry University(natural sciences edition), 2006, 30(2): 51-54.
[26] Xie Z S, Sun Y J, Lam S C, et al. Extraction and isolation of flavonoid glycosides from Flos Sophorae Immaturus using ultrasonic-assisted extraction followed by high-speed countercurrent chromatography[J]. J sep sci, 2014, 37(8): 957-965.
[27] Antonio F, Raffaele R. Modification of Job's method for determining the stoichiometry of protein-protein complexes[J]. Anal biochem, 2013, 313(1): 170-172.Doi: 10.1016/S0003-2697(02)00562-6.
[28] Masoomeh S, Jamshid L M, Abolghasem J. Determination of total phenols in tea infusions, tomato and apple juice by terbium sensitized fluorescence method as an alternative approach to the Folin-Ciocalteu spectrophotometric method[J]. Food Chem, 2008, 108(2): 695-701.Doi: 10.1016/j.foodchem.2007.11.008.
[29] Zeng Z Y, He Y B, Wu J L, et al. Synthesis of two branched fluorescent receptors and their binding properties for dicarboxylate anions[J]. Eur J Org Chem, 2004, 13:2888-2893.Doi: 10.1002/ejoc.200400014.
[30] Gu L Q, Wan X J, Liu H Y, et al. A novel ratiometric fluorescence sensor for Zn2+ detection[J]. Anal Methods, 2014,6(2): 8460-8463.Doi: 10.1039/c4ay01483a
[31] 曾振亚, 何永炳, 孟令芝. 阴离子荧光受体研究进展[J]. 化学进展, 2005, 17(2): 254-265. Zeng Z Y, He Y B, Meng L Z. Progress in fluorescent receptors for anions[J]. Prog Chem, 2005, 17(2): 254-265.
[32] 董智云, 江小枝, 薛芸蓉, 等. 含氮鎓阴离子受体的研究进展[J]. 高等学校化学学报, 2011, 32(9): 2032-2045. Dong Z Y, Jiang X Z, Xue Y R, et al. Imidazolium and pyridinium based receptors for anion recognition and sensing[J]. Chem J Chinese Universities, 2011, 32(9): 2032-2045.
[33] 江洪, 马续红, 方利, 等. N-硝基脲类的合成及其阴离子识别研究[J]. 无机化学学报, 2008, 24(7): 1073-1078. Jiang H, Ma X H, Fang L, et al. N-nitrourea derivatives: Synthesis and anion recognition properties[J]. Chinese J Inorg Chem, 2008, 24(7): 1073-1078.

基金

收稿日期:2015-06-25 修回日期:2015-10-15
基金项目:国家林业公益性行业科研专项项目(20120460102); “十二五”国家科技支撑计划(2012BAD21B04); 南京林业大学优秀博士学位论文创新基金项目
第一作者:徐园园(yyxu_njfu@163.com)。*通信作者:徐莉(xuliqby@njfu.edu.cn),教授。
引文格式:徐园园,杨世龙,姜维娜,等. 槲皮素作为荧光探针对醋酸根离子的识别作用[J]. 南京林业大学学报(自然科学版),2016,40(1):80-86.

PDF(1928830 KB)

Accesses

Citation

Detail

段落导航
相关文章

/