为了开发防滑减振结构型胶合板,采用阻尼涂料对意杨单板进行表面涂饰处理,应用动态热机械分析技术,研究了意杨单板阻尼体系的动态力学特性,以构建具有自由型和约束型两种阻尼结构的新型木基阻尼结构体系。结果表明:①通过在意杨单板表面涂饰阻尼涂料构建意杨单板阻尼体系是可行的,该阻尼体系在常温环境下具有优异的阻尼性能。②涂层厚度对意杨单板阻尼体系的性能具有显著影响,损耗因子和有效阻尼温域均随阻尼涂料厚度的增加而增大,自由型阻尼涂料厚度为0.5~2.0 mm时,体系的损耗因子普遍高于0.10,峰值可超过0.30,约束型意杨单板阻尼体系在涂料厚度2.0 mm条件下损耗因子最大可达0.12。③意杨单板阻尼体系的动态力学行为与常规黏弹性高分子聚合物类似,满足温频等效机制。④采用阻尼涂料对意杨单板阻尼改性,自由型阻尼结构优于约束型阻尼结构。综合考虑,建议采用自由型阻尼结构,阻尼涂料厚度控制在1.5~2.0 mm。
Abstract
In order to develop wood-based damping plywood with anti-slip & vibration structural properties, damping coatings were used to treat poplar veneers. Two damping constructions, i.e., freedom and constrained, were tested. The dynamic mechanical properties of the veneer-based damping constructions were analyzed using the dynamic thermo-mechanical analysis(DMA)method. The research results showed that: ① Veneer-based damping constructions exhibited good damping performance at room temperature by applying damping coatings on veneer surface. ② The thickness of cured coating on veneer surface significantly influenced the damping performance, i.e., the thicker paint layer led to greater combined loss factor(η)and wider effective damping temperature range. With 0.5-2.0 mm thick freedom damping paints, η values were all greater than 0.10 with a peak greater than 0.30. Constrained veneer-based damping construction had the maximum η value of 0.12. ③ Veneer-based damping constructions had similar time-temperature superposition(TTS)behaviors to normal viscoelastic polymers.④ The freedom construction showed better damping performance than the constrained system. The aforementioned research findings are helpful for the manufacturing of the damping structural plywood. The research suggests to make damping structural plywood using the freedom construction with the 1.5-2.0 mm thick coating layer.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王进, 张晓君, 丁智平,等.高分子阻尼涂料的研究进展[J]. 高分子通报, 2008(6):8-12. Doi:10.14028/j.cnki.1003-3726.2008.06.008.
Wang J, Zhang X J,Ding Z P, et al. Development of polymer damping coatings[J]. Polymer Bulletin, 2008(6):8-12.
[2] 杨雪莲,徐信武,吕吉宁,等.阻尼涂饰意杨胶合板的表面性能[J].林业工程学报,2016,1(1):25-30.Doi:10.13360/j.issn.2096-1359.2016.01.005.
Yang X L, Xu X W, Lyu J N, et al. Surface properties of Populus euramevicana plywood covered with damping coatings[J]. Journal of Forestry Engineering, 2016,1(1):25-30.
[3] 谭亮红,周志诚,贺才春. 水性阻尼涂料的动态力学性能研究[J].涂料工业, 2006, 36(11): 5-7. Doi:10.3969/j.issn.0253-4312.2006.11.002.
Tan L H, Zhou Z C, He C C. Study on dynamic mechanical properties of water-based damping coatings[J]. Paint & Coatings Industry, 2006, 36(11): 5-7.
[4] 孙广平,贾树盛,朱先勇,等. 热固性丙烯酸酯类核-壳结构互穿网络水性阻尼涂料的动态力学性能[J]. 中国腐蚀与防护学报,2004,24(1):41-44. Doi:10.3969/j.issn.1005-4537.2004.01.010.
Sun G P, Jia S S, Zhu X Y, et al. The dynamic mechanical behavior of water-solubilized damping coating with interpenetrating polymer networks of core-shell type of thermoset polyacrylic[J]. Journal of Chinese Society for Corrosion and Protection,2004,24(1):41-44.
[5] 董士峰. 阻尼涂层对悬臂梁动态特性影响的研究[D].沈阳:沈阳航空航天大学, 2015.
Dong S F. Study of effect of damping coating on the dynamic characteristics of cantilever[D]. Shenyang:Shenyang Aerospace University, 2015.
[6] 李宝军.基于一种新型粘弹性阻尼材料的约束阻尼结构性能表征及其ANSYS分析[D]. 青岛:青岛理工大学, 2011.
Li B J. Research of a constrained damping structure based on a new type of viscoelastic material and ANSYS analysis[D]. Qingdao:Qingdao Technological University, 2011.
[7] 丁国雷. 粘弹阻尼材料表征及约束阻尼结构的阻尼性能研究[D]. 青岛:青岛理工大学, 2012.
Ding G L. Characterization of viscoelastic damping material and damping properties of constrained damping structure[D]. Qingdao:Qingdao Technological University, 2012.
[8] 高家武. 高分子材料近代测试技术[M]. 北京:北京航空航天大学出版社, 1994.
[9] 关迎东,孙春龙,李海燕,等.有机高分子阻尼涂料的研究进展[J].涂料工业, 2011,41(9):73-76. Doi:10.3969/j.issn.0253-4312.2011.09.019.
Guan Y D, Sun C L, Li H Y, et al. Research progress on organic polymer damping coatings[J].Paint & Coatings Industry, 2011,41(9):73-76.
[10] 张文毓.阻尼材料发展现状与应用进展[J].材料开发与应用,2011,4(2):75-78. Doi:10.3969/j.issn.1003-1545.2011.02.018.
Zhang W Y. Progress in development and application of damping materials[J]. Development and Application of Materials, 2011,4(2):75-78.
[11] 金日光, 华幼卿.高分子物理[M].北京:化学工业出版社,1997.
[12] 常冠军. 粘弹性阻尼材料[M]. 北京:国防工业出版社, 2012.
[13] 国防科学技术工业委员会.GB/T 3045—1997.粘弹性阻尼材料通用规范[S]. 北京:中国标准出版社, 1997.
[14] 陈玲, 黄润州, 刘秀娟, 等.木粉、废旧橡胶和高密度聚乙烯复合材料的热解动力学特性[J].南京林业大学学报(自然科学版), 2014, 38(6): 135-140. Doi:10.3969/j.issn.1000-2006.2014.06.026.
Chen L, Huang R Z, Liu X J, et al. Thermal decomposition kinetics of wood/rubber/HDPE composites[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2014, 38(6): 135-140.
[15] George L B, Ival O S. Development of a viscoelastic composition having superior vibration-damping capability[J]. The Journal of the Acoustical Society of America, 1966, 39(4): 666-673.
[16] Ouis D. On the frequency dependence of the modulus of elasticity of wood[J]. Wood Science and Technology, 2002, 36(4): 335-346.
[17] 刘佩英.木塑复合材料动态粘弹性能研究[D].临安:浙江农林大学, 2014.
Liu P Y. Study on the dynamic viscoelasticity of wood-plastic composites[D]. Lin'an:Zhejiang A & F University, 2014.
基金
收稿日期:2015-06-30 修回日期:2016-02-15
基金项目:江苏省高校自然科学研究重大项目(13KJA220003); 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:徐信武(xucarpenter@aliyun.com),教授。
引文格式:徐信武,杨雪莲,吕吉宁,等. 表面阻尼涂饰意杨单板的动态力学特性[J]. 南京林业大学学报(自然科学版),2016,40(4):125-130.