冷结晶对杨木纤维/聚乳酸复合材料性能的影响

孙晓婷,唐启恒,常亮,郭文静

南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (04) : 137-142.

PDF(2309306 KB)
PDF(2309306 KB)
南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (04) : 137-142. DOI: 10.3969/j.issn.1000-2006.2016.04.022
研究论文

冷结晶对杨木纤维/聚乳酸复合材料性能的影响

  • 孙晓婷,唐启恒,常 亮,郭文静*
作者信息 +

Effects of cold crystallization on the properties of wood fiber/PLA bio-composites

  • SUN Xiaoting, TANG Qiheng, CHANG Liang, GUO Wenjing*
Author information +
文章历史 +

摘要

采用杨木纤维与聚乳酸(PLA)粉末共混压制成一种新型生物质复合材料,以不同升温方式对纯PLA板材及其复合材料进行冷结晶,并通过示差扫描量热仪(DSC)、偏光显微镜(POM)、扫描电子显微镜(SEM)和万能力学试验机等对其进行测试和表征。结果表明:通过冷结晶方法,纯PLA板材和复合材料的结晶度分别由6%和18.3%提高到50%左右,两者的密度和冲击强度没有发生明显变化; 但是复合材料弯曲强度和模量分别下降了约30%和16%,纯PLA板的弯曲强度也有一定程度的下降。通过SEM对复合材料微观结构进行表征,发现力学强度的下降是由于结晶后的PLA基体与木纤维之间的界面相容性变差造成的。通过POM观察冷结晶过程,发现纯PLA板及其复合材料形成大量的微小晶体,导致两者的透明性下降,因此,调控晶体结晶度有望成为改变PLA材料透明性能的新方法。

Abstract

A new type of bio-composite consisting of poplar wood fibers and poly(lactic acid)(PLA)was prepared by hot-pressing. The PLA-based bio-composites and sole PLA were treated with cold crystallization at different heating rates. The effects of cold crystallization on performance of both materials were analyzed with the differential scanning calorimeter(DSC), polarizing microscope(POM)and scanning electron microscope(SEM). The results showed that the crystallinities of sole PLA panels and PLA-based bio-composites increased from 6% to 50%, and from 18.3% to 50%, respectively. Mechanical properties were tested with a universal testing machine and the increased crystallinity did not induce variations of the density and impact strength of both materials. However, the flexural strength and flexural modulus of wood fiber/PLA composites decreased by 30% and 16%, respectively. The flexural strength of sole PLA panels also decreased to some extent. Confirmed by SEM, the compromised mechanical strength and stiffness could be due to the poor interface compatibility between wood fibers and the polymer matrix. The process of cold crystallization was observed by POM, in which a large number of crystals formed in both materials, resulting in the worse transparency of both materials. Based on the results, transparency of PLA based composite could be adjusted using the regulation of the PLA crystallinity in the composite system.

引用本文

导出引用
孙晓婷,唐启恒,常亮,郭文静. 冷结晶对杨木纤维/聚乳酸复合材料性能的影响[J]. 南京林业大学学报(自然科学版). 2016, 40(04): 137-142 https://doi.org/10.3969/j.issn.1000-2006.2016.04.022
SUN Xiaoting, TANG Qiheng, CHANG Liang, GUO Wenjing. Effects of cold crystallization on the properties of wood fiber/PLA bio-composites[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2016, 40(04): 137-142 https://doi.org/10.3969/j.issn.1000-2006.2016.04.022
中图分类号: TS653.3   

参考文献

[1] 郭文静.木纤维/聚乳酸生物质复合材料复合因子研究[D].北京:中国林业科学研究院,2008:6. Guo W J. The study on compounding factors of wood fiber/poly(lactic acid)bio-composites[D]. Beijing: Chinese Academy of Forestry, 2008: 6.
[2] Garlotta D. A literature review of poly(lactic acid)[J]. Journal of Polymers and the Environment, 2001(2):63-84. Doi:10.1023/A:1020200822435.
[3] Auras R, Harte B, Selke S. An overview of polylactides as packaging materials[J]. Macromol Biosci, 2004, 4(9):835-864. Doi:10.1002/mabi.200400043.
[4] 魏俊超,马丽莉,戴延凤,等.改性羟基磷灰石聚乳酸纳米复合材料的结晶行为[J].高等学校化学学报,2011,32(11):2674-2679. Wei J C, Ma L L, Dai Y F, et al. Crystallization behavior of modified hydroxyapatite/poly(L-lactide)nanocomposites[J]. Chemical Journal of Chinese Universities, 2011, 32(11): 2674-2679.
[5] 董树君,于婷,魏俊超,等.聚乳酸接枝改性纳米生物玻璃/PLGA复合材料的制备、表面性质及生物活性[J].高等学校化学学报,2009,30(5):1018-1023. Doi:10.3321/j.issn:0251-0790.2009.05.035. Dong S J, Yu T, Wei J C, et al. Preparation, surface properties and biological activity of the composite of poly(lactide-co-glycolide)and bioglass nanoparticles surface grafted with poly(L-lactide)[J]. Chemical Journal of Chinese Universities, 2009, 30(5): 1018-1023.
[6] 车晶,杨荣杰.聚乳酸-聚乙二醇的熔融共聚及结构表征[J].高分子材料科学与工程,2012,28(12):155-158. Che J, Yang R J. Characterization of poly(L-Lactic Acid)-polyethylene glycol copolymers synthesized by melt copolymerization[J]. Polymer Materials Science and Engineering, 2012, 28(12): 155-158.
[7] Oksman K, Skrifvars M, Selin J F. Natural fibres as reinforcement in polylactic acid(PLA)composites[J]. Composites Science and Technology, 2003, 63(9): 1317-1324.
[8] 司朋飞,罗发亮,海梅.聚L-乳酸/4,4'-二羟基二苯硫醚共混物的分子间相互作用及结晶和熔融行为[J].高等学校化学学报,2015,36(1):188-194. Doi:10.7503/cjcu20140730. Si P F, Luo F L, Hai M. Intermolecular interactions and crystallization and melting behavior of poly(L-lactic)/4,4'-thiobis phenol blends[J]. Chemical Journal of Chinese Universities, 2015, 36(1): 188-194.
[9] 吴爽,刘伟,王青松,等.滑石粉粒径对聚乳酸的结晶行为和力学性能研究[J].塑料包装, 2012,22(4):10-14. Doi:10.3969/j.issn.1006-9828.2012.04.004. Wu S, Liu W, Wang Q S, et al. Crystallization behavior and mechanical properties of poly(lactic acid)/talc systerms[J]. Plastics Packaging, 2012, 22(4): 10-14.
[10] 陈咏,窦强.成核剂对聚乳酸结晶及力学性能的影响[J].现代塑料加工应用,2012,24(6):39-42. Doi:10.3969/j.issn.1004-3055.2012.06.011. Chen Y, Dou Q. Effect of nucleating agent on crystallization behaviors and mechanical properties of PLA[J]. Modern Plastics Processing and Applications, 2012, 24(6): 39-42.
[11] 石坚, 卢秀萍, 李红月, 等. SiO2-MWNTs/聚乳酸复合材料的冷结晶动力学及球晶形态[J]. 复合材料学报, 2015, 32(3):737-743. Shi J, Lu X P, Li H Y, et al. Cold crystallization kinetics and spherulitic morphologies of SiO2-mwnts/polylactide composites[J]. Acta Materiae Compositae Sinica, 2015, 32(3):737-743.
[12] 张予东,张二琴,郭有钢,等.聚乳酸/纳米SiO2复合材料的熔融和冷结晶行为[J].化学研究,2012,23(6):79-85. Doi:10.3969/j.issn.1008-1011.2012.06.020. Zhang Y D, Zhang E Q, Guo Y G, et al. Melting behavior and cold crystallization of poly(L-lactic acid)/nano-silica composite[J]. Chemical Research, 2012, 23(6): 79-85.
[13] 何勇,高兆芬,辛燕,等.左旋聚乳酸的结晶行为研究[J].高等学校化学学报,2006,27(4):745-748. Doi:10.3321/j.issn:0251-0790.2006.04.028. He Y, Gao Z F, Xin Y, et al. Crystallization behavior of poly(L-lactide)[J]. Chemical Journal of Chinese Universities, 2006, 27(4): 745-748.
[14] 王正岩,郝章来.聚乳酸的生产和应用及市场前景[J].化工新型材料,2003,31(7): 40-41,43. Doi:10.3969/j.issn.1006-3536.2003.07.012. Wang Z Y, Hao Z L. Production and application of polylactic acid and its market prospects[J]. New Chemical Materials, 2003, 31(7): 40-41,43.
[15] 刘一楠.冷却速率及纤维形态对木纤维/聚乳酸复合材料性能的影响[D].北京:中国林业科学研究院,2014. Liu Y N. Effects of cooling rate and wood fiber size on properties of wood fiber/PLA(polylactic acid)composites[D].Beijing: Chinese Academy of Forestry, 2014.
[16] Fambri L, Pegoretti A, Fenner R, et al. Biodegradable fibres of poly(L-lactic acid)produced by melt spinning[J]. Polymer, 1997, 38(1): 79-85.
[17] 潘峤,姚正军,周金堂,等.麦秸纤维含量和粒径大小对聚乳酸力学性能和结晶度的影响[J].高分子材料科学与工程,2012,28(8):101-109. Pan Q, Yao Z J, Zhou J T, et al. Effect of KOH and ZnCl2 activators on microstruture of ramie stalk based activated carbon[J]. Polymer Materials Science and Engineering, 2012, 28(8): 101-109.
[18] 何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,2000:81.
[19] 过梅丽,赵得禄.高分子物理[M].北京:北京航空航天大学出版社,2005:244.
[20] 郭文静,鲍甫成,王正.木纤维-聚乳酸复合材料性能与聚乳酸性能的相关性[J].高分子材料科学与工程,2010,26(2):62-65. Guo W J, Bao F C, Wang Z. Properties relation between WF-PLA composites and poly(lactic acid)[J]. Polymer Materials Science and Engineering, 2010, 26(2):62-65.

基金

收稿日期:2015-07-13 修回日期:2016-01-06
基金项目:中央级公益性科研院所基本科研业务费专项资金项目(CAFINT2014C02)
第一作者:孙晓婷(xtsun1@163.com)。*通信作者:郭文静(lkyfhs@163.com),研究员。
引文格式:孙晓婷,唐启恒,常亮,等. 冷结晶对杨木纤维/聚乳酸复合材料性能的影响[J]. 南京林业大学学报(自然科学版),2016,40(4):137-142.

PDF(2309306 KB)

Accesses

Citation

Detail

段落导航
相关文章

/