杨树人工林沼液和生物炭混施对表层土壤活性有机碳的影响

葛之葳,张玲,卜丹蓉,赵倩,阮宏华,曹国华

南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (06) : 9-14.

PDF(1565371 KB)
PDF(1565371 KB)
南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (06) : 9-14. DOI: 10.3969/j.issn.1000-2006.2016.06.002
专题报道

杨树人工林沼液和生物炭混施对表层土壤活性有机碳的影响

  • 葛之葳1,张 玲1,卜丹蓉1,赵 倩1,阮宏华1*,曹国华2
作者信息 +

Effects of biogas slurry and biochar application on active organic carbon in the topsoil of poplar plantation

  • GE Zhiwei1, ZHANG Ling1, BU Danrong1, ZHAO Qian1, RUAN Honghua1*, CAO Guohua2
Author information +
文章历史 +

摘要

人工林施肥是一种重要的经营管理措施,而近年来沼液的处理与生物炭肥的使用也引起了人们广泛关注。在苏北杨树人工林集中分布区开展了沼液(施用量为0、125、250、375 m3/hm2)和生物炭(施用量为0、40、80、120 t/hm2)交互肥效实验,结果表明:①在所有沼液施肥水平中,生物炭的施用增加了表层土壤的活性有机碳,并提高了土壤微生物生物量碳氮比,使得微生物群落向真菌主导类型发展; ②在所有沼液施肥水平中,生物炭的添加显著提高了表层土壤(0~10 cm)的pH,促进了土壤的氮矿化和硝化作用; ③沼液和生物炭对土壤活性有机碳和pH具有显著的交互效应。因此,沼液和生物炭混施能进一步促进土壤活性有机碳的含量,改良土壤肥力,提高人工林生态系统生产力。

Abstract

Fertilization is an important measure in the management of plantation, and the disposal of biogas slurry and application of biochar attracted widespread attention recently. Interactive fertilizer efficiency experiment was carried out in the poplar plantation in northern Jiangsu. The content of nitrate & ammonium nitrogen in the concentration of biogas slurry were 0, 125, 250, 375 m3/hm2 and biochar were 0, 40, 80, 120 t/hm2. The results showed that: ① application of biochar improved topsoil(0-10 cm)pH and promoted the nitrogen mineralization and nitrification in all concentrations of biogas slurry addition; ② Application of biochar could increase soil active organic carbon, dissolved organic nitrogen and soil microbial biomass carbon and nitrogen ratios, which indicated that the microbial community had shift to fungi dominated; ③ Significant interactive effects on soil active organic carbon and pH were observed between the applications of biogas slurry and biochar. Therefore mixed fertilizer of biogas slurry and biochar could promote the content of soil active organic carbon, improve soil fertility and enhance the productivity of plantation ecosystem.

引用本文

导出引用
葛之葳,张玲,卜丹蓉,赵倩,阮宏华,曹国华. 杨树人工林沼液和生物炭混施对表层土壤活性有机碳的影响[J]. 南京林业大学学报(自然科学版). 2016, 40(06): 9-14 https://doi.org/10.3969/j.issn.1000-2006.2016.06.002
GE Zhiwei, ZHANG Ling, BU Danrong, ZHAO Qian, RUAN Honghua, CAO Guohua. Effects of biogas slurry and biochar application on active organic carbon in the topsoil of poplar plantation[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2016, 40(06): 9-14 https://doi.org/10.3969/j.issn.1000-2006.2016.06.002
中图分类号: S714.2   

参考文献

[1] 国家林业局森林资源管理司. 第七次全国森林资源清查及森林资源状况[J]. 林业资源管理, 2010(1): 1-8. Doi:10.3969/j.issn.1002-6622.2010.01.001. Department of Forest Resources Management, SFA. The 7th national forest inventory and status of forest resources[J]. Forest Resources Management, 2010(1): 1-8.
[2] 陈琴, 方升佐, 田野.杨树和桤木落叶混合分解对土壤微生物生物量的影响[J].应用生态学报, 2012, 23(8):2121-2128. Chen Q, Fang S Z, Tian Y. Effects of the decomposition of poplar and aider mixed leaf litters on soil microbial biomass[J]. Chinese Journal of Applied Ecology, 2012, 23(8): 2121-2128.
[3] ]徐红梅, 汤景明. 人工林可持续经营研究进展[J]. 湖北林业科技, 2013(1): 34-37. Doi:10.3969/j.issn.1004-3020.2013.01.011. Xu H M, Tang J M. Research advancement of planted forest sustainable management[J]. Hubei Forestry Science and Technology, 2013(1): 34-37.
[4] 方升佐. 中国杨树人工林培育技术研究进展[J]. 应用生态学报, 2008, 19(10): 2308-2316. Fang S Z. Silviculture of poplar plantation in china: a review[J]. Chinese Journal of Applied Ecology, 2008, 19(10): 2308-2316.
[5] Lu J, Zhu L, Hu G, et al. Integrating animal manure-based bioenergy production with invasive species control: a case study at Tongren Pig Farm in China[J]. Biomass and Bioenergy, 2010, 34(6): 821-827. Doi:10.1016/j.biombioe.2010.01.026.
[6] 叶小梅, 常志州, 钱玉婷, 等. 江苏省大中型沼气工程调查及沼液生物学特性研究[J]. 农业工程学报, 2012, 28(6): 222-227. Doi:10.3969/j.issn.1002-6819.2012.06.036. Ye X M, Chang Z Z, Qian Y T, et al. Investigation on large and medium scale biogas plants and biological properties of digestate in Jiangsu Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(6): 222-227.
[7] 姜丽娜, 王强, 陈丁江, 等. 沼液稻田消解对水稻生产、土壤与环境安全影响研究[J]. 农业环境科学学报, 2011, 30(7): 1328-1336. Jiang L N, Wang Q, Chen D J, et al. Effects of paddy field disposal of biogas slurry on the rice production, soil quality and.environmental safety[J]. Journal of Agro-Environment Science, 2011, 30(7): 1328-1336.
[8] Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biota—a review[J]. Soil Biology and Biochemistry, 2011, 43(9): 1812-1836. Doi:10.1016/j.soilbio.2011.04.022.
[9] Novak J M, Busscher W J, Laird D L, et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil[J]. Soil Science, 2009, 174(2): 105-112. Doi:10.1097/ss.0b013e3181981d9a.
[10] Clough T J, Condron L M. Biochar and the nitrogen cycle: introduction[J]. J Environ Qual, 2010, 39(4): 1218-1223. Doi:10.2134/jeq2010.0204.
[11] Laird D, Fleming P, Wang B, et al. Biochar impact on nutrient leaching from a midwestern agricultural soil[J]. Geoderma, 2010, 158(3): 436-442. Doi:10.1016/j.geoderma.2010.05.012.
[12] Lehmann J. Bio-energy in the black[J]. Frontiers in Ecology and the Environment, 2007, 5(7): 381-387.
[13] Senbayram M, Chen R, Mühling K H, et al. Contribution of nitrification and denitrification to nitrous oxide emissions from soils after application of biogas waste and other fertilizers[J]. Rapid Commun Mass Spectrom, 2009, 23(16): 2489-2498. Doi:10.1002/rcm.4067.
[14] 陈伟, 周波, 束怀瑞. 生物炭和有机肥处理对平邑甜茶根系和土壤微生物群落功能多样性的影响[J]. 中国农业科学, 2013, 46(18): 3850-3856. Doi:10.3864/j.issn.0578-1752.2013.18.014. Chen W, Zhou B, Shu H R. Effects of organic fertilizer and biochar on root system and microbial functional diversity of Malus hupehensis Rehd[J]. Scientia Agricultura Sinica, 2013, 46(18): 3850-3856.
[15] Singla A, Dubey S K, Singh A, et al. Effect of biogas digested slurry-based biochar on methane flux and Methanogenic archaeal diversity in paddy soil[J]. Agriculture, Ecosystems & Environment, 2014, 197: 278-287. Doi:10.1016/j.agee.2014.08.010.
[16] Frey S D, Knorr M, Parrent J L, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J]. Forest Ecology and Management, 2004, 196(1): 159-171. Doi:10.1016/j.foreco.2004.03.018.
[17] 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002.
[18] 宋震震, 李絮花, 李娟, 等. 有机肥和化肥长期施用对土壤活性有机氮组分及酶活性的影响[J]. 植物营养与肥料学报, 2014, 20(3): 525-533. Doi:10.11674/zwyf.2014.0302. Song Z Z, Li X H, Li J, et al. Long-term effects of mineral versus organic fertilizers on soil labile nitrogen fractions and soil enzyme activities in agricultural soil[J]. Plant Nutrition and Fertilizer Science, 2014, 20(3): 525-533.
[19] Warnock D D, Lehmann J, Kuyper T W, et al. Mycorrhizal responses to biochar in soil-concepts and mechanisms[J]. Plant and Soil, 2007, 300(1): 9-20. Doi:10.1007/s11104-007-9391-5.
[20] Van Zwieten L, Kimber S, Morris S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2009, 327(1): 235-246. Doi:10.1007/s11104-009-0050-x.
[21] Novak J M, Busscher W J, Laird D L, et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil[J]. Soil Science, 2009, 174(2): 105-112. Doi:10.1097/ss.0b013e3181981d9a.
[22] Hang B, Lehmann J, Solomon D, et al. Black carbon increases cation exchange capacity in soils[J]. Soil Sci Soc Am J, 2006, 70(5): 1719-1730. Doi:10.2136/sssaj2005.0383.
[23] Yuan J H, Xu R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic ultisol[J]. Soil Use and Management, 2010, 27(1): 110-115. Doi:10.1111/j.1475-2743.2010.00317.x.
[24] 郭伟, 陈红霞, 张庆忠, 等.华北高产农田施用生物炭对耕层土壤总氮和碱解氮含量的影响[J]. 生态环境学报, 2011, 20(3): 425-428. Doi:10.3969/j.issn.1674-5906.2011.03.006. Guo W, Chen H X, Zhang Q Z, et al. Effects of biochar application on total nitrogen and alkali-hydrolyzable nitrogen content in the topsoil of the high-yield cropland in north China Plain[J]. Ecology and Environmental Sciences, 2011, 20(3): 425-428.
[25] 勾芒芒, 屈忠义. 生物炭对改善土壤理化性质及作物产量影响的研究进展[J]. 中国土壤与肥料, 2013(5): 1-5. Doi:10.11838/sfsc.20130501. Gou M M, Qu Z Y. Research on using biochar to agricultural soil amendment and crop yield[J]. Soils and Fertilizers Sciences in China, 2013(5): 1-5. Doi:10.11838/sfsc.20130501.
[26] Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems:a review[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11:403-427. Doi:10.1007/s11027-005-9006-5.
[27] Budai A, Wang L, Gronli M, et al. Surface properties and chemical composition of corncob and Miscanthus biochars: effects of production temperature and method[J]. J Agric Food Chem, 2014, 62(17): 3791-3799. Doi:10.1021/jf501139f.
[28] Rajapaksha A U, Vithanage M, Zhang M, et al. Pyrolysis condition affected sulfamethazine sorption by tea waste biochars[J]. Bioresour Technol, 2014, 166: 303-308. Doi:10.1016/j.biortech.2014.05.029.http://www.ncbi.nlm.nih.gov/pubmed/24926603.
[29] Mukherjee A, Zimmerman A R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures[J]. Geoderma, 2013, 193: 122-130. Doi:10.1016/j.geoderma.2012.10.002.
[30] Eykelbosh A J, Johnson M S, Couto E G. Biochar decreases dissolved organic carbon but not nitrate leaching in relation to vinasse application in a Brazilian sugarcane soil[J]. J Environ Manage, 2015, 149: 9-16. Doi:10.1016/j.jenvman.2014.09.033.
[31] Gul S, Whalen J K, Thomas B W, et al. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions[J]. Agriculture, Ecosystems & Environment, 2015, 206: 46-59. Doi:10.1016/j.agee.2015.03.015.
[32] Gheorghe C, Marculescu C, Badea A, et al. Effect of pyrolysis conditions on biochar production from biomass[C]// Proceedings of the 3rd WSEAS Int. Conf. on Renewable Energy Sources. Tenerife, Canary Islands Spain:University of La Laguna, 2009: 239-241.
[33] Dong X L, Ma L Q, Gress J, et al. Enhanced Cr(VI)reduction and As(III)oxidation in ice phase: important role of dissolved organic matter from biochar[J]. Journal of Hazardous Materials, 2014, 267(28): 62-70. Doi:10.1016/j.jhazmat.2013.12.027.
[34] Kolb S E, Fermanich K J, Dornbush M, et al. Effect of charcoal quantity on microbial biomass and activity in temperate soils[J]. Soil Science Society of American Journal, 2009, 73(4): 1173-1181. Doi:10.2136/sssaj2008.0232.
[35] Knicker H. How does fire affect the nature and stability of soil organic nitrogen and carbon? a review[J]. Biogeochemistry, 2007, 85(1): 91-118. Doi:10.1007/s10533-007-9104-4.
[36] Wallenstein M D, McNulty S, Fernandez I J, et al. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments[J]. Forest Ecology and Management, 2006, 222(1): 459-468. Doi:10.1016/j.foreco.2005.11.002.

基金

基金项目:国家重点基础研究发展计划项目(2012CB416904); 江苏省基础研究计划(自然科学基金)青年基金项目(BK20130973); 江苏省高校优势学科建设工程资助项目(PAPD)
第一作者:葛之葳(nerrynor@163.com),讲师。
*通信作者:阮宏华(hhruan@njfu.edu.cn),教授。
引文格式:葛之葳,张玲,卜丹蓉,等. 杨树人工林沼液和生物炭混施对表层土壤活性有机碳的影响[J]. 南京林业大学学报(自然科学版),2016,40(6):9-14.

PDF(1565371 KB)

Accesses

Citation

Detail

段落导航
相关文章

/