【目的】研究小型河流库坝建设对河道沉积特征及重金属元素分布特征的影响。【方法】以淮河4级支流索河三仙庙水库至丁店水库段为研究对象,依据水流方向及库坝位置将其分为上、中、下3段,分别采用单因素方差分析和冗余分析,对3段的表层沉积物及下表层沉积物粒度特征,以及As、Cr、Pb、Cd、Cu、Hg和Zn 共7种重金属元素进行了分析和评价。【结果】表层和下表层沉积物各粒度组分和有机碳含量基本相同,但表层重金属含量略高,表明库坝建设后该区域沉积环境总体上较为稳定,而重金属污染有所加重; 3段间的水文条件差异较大,上段常处于相对断流状态,沉积物中砂粒含量较多,中段水流较小,粉粒和黏粒等粒径较小的沉积物粒度组分含量较高,下段常年积水,但水位变化较大,沉积物特征与上段相似; 重金属元素分布特征显示其在中段的含量均高于上段和下段; 有机碳在中段的含量极显著高于其在上、下段的含量。【结论】总体上,库坝建设改变了河流的水文条件,影响沉积物特征,对重金属元素分布影响较大,使得中段重金属元素相对容易富集。
Abstract
【Objective】 Study the effects of a dam on heavy metal distribution in sediments.【Methods】We used a two-step approach to understand the influence of a dam on sediment deposition and heavy metal distribution. The first step was to evaluate the effects of dam construction on sedimentary characteristics based on the changes in hydrological conditions by using One-way analysis of variance(ANOVA). The second step applied redundancy analysis to examine the relationship between heavy metals(As, Cr, Pb, Cd, Cu, Hg and Zn)contents and the physical and chemical properties of sediments, including grain size distribution and organic carbon content. The Suo River was selected as the study area, which was divided into three parts(up, middle and down)according to the direction of the water flow and the position of the dam. 【Result】 The hydrological conditions in each part showed marked differences: the up part regularly showed a state of river blanking, the middle part had low water flow, and the down part always contained water. The reservoir-dam construction affected these characteristics and distribution of sediments. Analyses results of grain size distribution showed silt and clay depositions were higher in the middle part than those recorded in the up and down parts. Silt represented the largest proportion of sediments in all samples, whereas clay comprised the lowest percentage. Reservoir-dam construction resulted in an abundance of tiny grains of sediment in the middle part, and the organic matter also deposited in the middle part, depending on the flow regime and flow rate of the river. One-way ANOVA analysis showed that the distributions of heavy metals contents were high in the middle part, except Cr and Cu. Redundancy analysis showed that the grain size played a significant role in controlling heavy metal content in sediments, as the content tended to increase with declining grain size. 【Conclusion】Overall, reservoir-dam construction increased the risk of heavy metal pollution by changing the hydrological conditions.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] NILSSON C, REIDY C A, DYNESIUS M, et al. Fragmentation and flow regulation of the world’s large river systems [J]. Science, 2005, 308(5720): 405-408. DOI: 10.1126/science.1107887.
[2] TAKAHASHI M, NAKAMURA F. Impacts of dam-regulated flows on channel morphology and riparian vegetation: a longitudinal analysis of Satsunai River, Japan [J]. Landscape and Ecological Engineering, 2010, 7(1): 65-77. DOI: 10.1007/s11355-010-0114-3.
[3] 李冬锋, 左其亭. 闸坝调控对重污染河流水质水量的作用研究[J].水电能源科学, 2012,30(10):26-29. LI D F, ZUO Q T. Study on mechanism of water quality and quantity of heavy pollution river by dam regulating [J]. Water Resources and Power,2012, 30(10):26-29.
[4] POFF N L, HART D D. How dams vary and why it matters for the emerging science of dam removal [J]. BioScience, 2002, 52(8): 659-668. DOI: 10.1641/0006-3568(2002)052[0659:hdvawi]2.
[5] AL-TAANI A A, BATAYNEH A T, EL-RADAIDEH N, et al. Spatial distribution and pollution assessment of trace metals in surface sediments of Ziqlab Reservoir, Jordan [J]. Environmental Monitoring and Assessment, 2015, 187(2): 32. DOI: 10.1007/s10661-015-4289-9.
[6] BAI J, CUI B, CHEN B, et al. Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China [J]. Ecological Modelling, 2011, 222(2): 301-306. DOI: 10.1007/s12665-012-2196-8.
[7] YUAN G L, LIU C, CHEN L, et al. Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China [J]. Journal of Hazardous Materials, 2011, 185(1): 336-345. DOI: 10.1016/j.jhazmat.2010.09.039.
[8] DANG T H, COYNEL A, ORANGE D, et al. Long-term monitoring(1960-2008)of the river sediment transport in the Red River Watershed(Vietnam): temporal variability and dam-reservoir impact [J]. Science of the Total Environment, 2010, 408(20): 4654-4664. DOI:10.1016/j.scitotenv.2010.07.007.
[9] United States Environmental Protection Agency. 6010C 2007 Inductively coupled plasma-atomic emission spectrometry[EB/OL].
[2015-10-10]. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/6010c.pdf.
[10] 梁重山, 党 志, 刘丛强. 土壤/沉积物样品中有机碳含量的快速测定[J]. 土壤学报, 2002, 39(1):135-139. DOI: 10.3321/j.issn:0564-3929.2002.01.019. LIANG C S, DANG Z, LIU C Q. Rapid determination of total organic carbon in soil/sediment samples [J]. Acta Pedologica Sinica, 2002, 39(1): 135-139.
[11] 中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978:470-474.
[12] TER BRAAK C J F, PRENTICE I C. A theory of gradient analysis[J]. Advances in Ecological Research, 1988, 18: 271-317. DOI:10.1016/S0065-2504(03)34003-6.
[13] KAMARUDIN M K A, TORIMAN M E,MASASTURA S S, et al. Temporal variability on lowland river sediment properties and yield [J]. American Journal of Environmental Sciences, 2009, 5(5): 657-663. DOI:10.3844/ajessp.2009.657.663.
[14] 蹇丽, 黄泽春, 刘永轩, 等. 采矿业污染河流底泥及河漫滩沉积物的粒径组成与砷形态分布特征[J]. 环境科学学报,2010,30(9): 1862-1870. DOI:10.13671/j.hjkxxb.2010.09.019. JIAN L, HUANG Z C, LIU Y X, et al. Particle size distribution and arsenic partitioning in sediments from a river polluted by mining[J]. Acta Scientiae Circumstantiae, 2010, 30(9): 1862-1870.
[15] WILLIAMS G P. Sediment concentration versus water discharge during single hydrologic events in rivers [J]. Journal of Hydrology, 1989, 111(1): 89-106. DOI: 10.1016/0022-1694(89):90254-0.
[16] 田慧娟, 何 江, 吕昌伟,等. 黄河包头段不同粒级沉积物中重金属形态分布特征[J]. 沉积学报, 2011, 29(4):776-782.DOI:10.14027/j.cnki.cjxb.2011.04.001. TIAN H J, HE J, LUE C W, et al. Species and distribution of heavy metals in different size fractions of sediments from the baotou section of the Yellow River [J]. Acta Sedimentologica Sinica, 2011, 29(4):776-782.
[17] LI F, LI G, JI J. Increasing magnetic susceptibility of the suspended particles in Yangtze River and possible contribution of fly ash [J]. Catena, 2011, 87(1): 141-146. DOI:10.1016/j.catena.2011.05.019.
[18] ABRAHIM G M S, PARKER R J. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand [J]. Environmental Monitoring and Assessment, 2008, 136(1-3): 227-238. DOI: 10.1007/s10661-007-9678-2.
[19] 文湘华.乐安江沉积物酸碱特性及其对重金属释放特征的影响[J].环境化学,1996,15(6):510-514. WEN X H. The acid and alkaline from the sediments in Leanjiang and impact on heavy metal environmental chemistry [J]. Environmental Chemistry, 1996,11,15(6):510-514.
[20] 金相灿. 黄河中游悬浮物对铜、铅和锌的吸附与释放的研究[J].中国环境科学,1984,4(4):54-57. JIN X C. Study on adsorb and release on Cu,Pb, Zn of suspended in middle Yellow River [J]. China Environmental Science, 1984,4(4):54-57.
基金
收稿日期:2015-10-13 修回日期:2016-08-27
基金项目:国家水体污染控制与治理科技重大专项项目(2012ZX07204004); 国家自然科学基金项目(41271197,51309242)
第一作者:王莹莹(wangyingying.rain@hotmail.com)。*通信作者:刘茂松(msliu@nju.edu.cn),副教授。
引文格式:王莹莹,刘茂松,盛晟,等. 小型河流库坝建设对河道重金属元素分布的影响[J]. 南京林业大学学报(自然科学版),2017,41(2):15-19.