[1] HAYHOE K, WAKE C P, HUNTINGTON T G, et al. Past and future changes in climate and hydrological indicators in the US Northeast[J]. Climate Dynamics, 2007, 28(4): 381-407. DOI:10.1007/s00382-006-0187-8.
[2] SOLOMON S, QIN D, MANNING M,et al. IPCC fourth assessment report of working group I. climate change 2007: the physical science basis[M]. Cambridge: Cambridge University Press, 2007.
[3] ALLEN C D, MACALADY A K, CHENCHOUNI H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010, 259(4): 660-684. DOI:10.1016/j.foreco.2009.09.001.
[4] CHOAT B, JANSEN S, BRODRIBB T J, et al. Global convergence in the vulnerability of forests to drought[J]. Nature, 2012, 491(7426): 752-755. DOI:10.1038/nature11688.
[5] TYREE M T, SPERRY J S. Vulnerability of xylem to cavitation and embolism[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40(1): 19-38. DOI:10.1146/annurev.pp.40.060189.000315.
[6] DOMEC J C, GARTNER B L. Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees[J]. Trees, 2001, 15(4): 204-214. DOI:10.1007/s004680100095.
[7] TYREE M T, DIXON M A. Cavitation events in Thuja occidentalis L.:utrasonic acoustic emissions from the sapwood can be measured[J]. Plant Physiology, 1983, 72(4): 1094-1099. DOI:10.1104/pp.72.4.1094.
[8] TYREE M T, DIXON M A, TYREE E L, et al. Ultrasonic acoustic emissions from the sapwood of cedar and hemlock: an examination of three hypotheses regarding cavitations[J]. Plant Physiology, 1984, 75(4): 988-992. DOI:10.1104/pp.75.4.988.
[9] GULLO M A, SALLEO S. Three different methods for measuring xylem cavitation and embolism: a comparison[J]. Annals of Botany, 1991, 67(5): 417-424. DOI:10.1093/oxfordjournals.aob.a088176.
[10] COCHARD H. Vulnerability of several conifers to air embolism[J]. Tree Physiology, 1992, 11(1): 73-83. DOI:10.1093/treephys/11.1.73.
[11] COCHARD H, BADEL E, HERBETTE S, et al. Methods for measuring plant vulnerability to cavitation: a critical review[J]. Journal of Experimental Botany, 2013, 64(15): 4779-4791. DOI:10.1093/jxb/ert193.
[12] TYREE M T, DIXON M A, THOMPSON R G. Ultrasonic acoustic emissions from the sapwood of Thuja occidentalis measured inside a pressure bomb[J]. Plant Physiology, 1984, 74(4): 1046-1049. DOI:10.1104/pp.74.4.1046.
[13] TYREE M T, DIXON M A. Water stress induced cavitation and embolism in some woody plants[J]. Physiologia Plantarum, 1986, 66(3): 397-405. DOI:10.1111/j.1399-3054.1986.tb05941.x.
[14] ROSNER S, KLEIN A, WIMMER R, et al. Extraction of features from ultrasound acoustic emissions: a tool to assess the hydraulic vulnerability of Norway spruce trunkwood[J]. New Phytologist, 2006, 171(1): 105-116. DOI:10.1111/j.1469-8137.2006.01736.x.
[15] MAYR S, ROSNER S. Cavitation in dehydrating xylem of Picea abies: energy properties of ultrasonic emissions reflect tracheid dimensions[J]. Tree Physiology, 2011, 31(1): 59-67. DOI:10.1093/treephys/tpq099.
[16] ROSNER S. Acoustic detection of cavitation events in water conducting elements of Norway spruce sapwood[J]. Journal of Acoustic Emission, 2004, 22(1): 110-118.
[17] ROSNER S. A new type of vulnerability curve: is there truth in vine?[J]. Tree Physiology, 2015, 35(4): 410-414. DOI:10.1093/treephys/tpu080.
[18] HACKE U, SAUTER J J. Drought-induced xylem dysfunction in petioles, branches, and roots of Populus balsamifera L. and Alnus glutinosa(L.)Gaertn[J]. Plant Physiology, 1996, 111(2): 413-417. DOI:10.1104/pp.111.2.413.
[19] HACKE U, SAUTER J J. Vulnerability of xylem to embolism in relation to leaf water potential and stomatal conductance in Fagus sylvatica f. purpurea and Populus balsamifera[J]. Journal of Experimental Botany, 1995, 46(9): 1177-1183. DOI:10.1093/jxb/46.9.1177.
[20] NOLF M, BEIKIRCHER B, ROSNER S, et al. Xylem cavitation resistance can be estimated based on time-dependent rate of acoustic emissions[J]. New Phytologist, 2015, 208(2): 625-632. DOI:10.1111/nph.13476.
[21] DE ROO L, VERGEYNST L, DE BAERDEMAEKER N, et al. Acoustic emissions to measure drought-induced cavitation in plants[J]. Applied Sciences, 2016, 6(3): 71. DOI:10.3390/app6030071.
[22] BEALL F C. Overview of the use of ultrasonic technologies in research on wood properties[J]. Wood Science and Technology, 2002, 36(3): 197-212. DOI:10.1007/s00226-002-0138-4.
[23] KAWAMOTO S, WILLIAMS R S. Acoustic emission and acousto-ultrasonic techniques for wood and wood-based composites: a review[R]. Madison, WI, USA: US Department of Agriculture, 2002.
[24] QUARLES S L. Acoustic emission associated with oak during drying[J]. Wood and Fiber Science, 1992, 24(1): 2-12.
[25] VERGEYNST L L, SAUSE M G, DE BAERDEMAEKER N J, et al. Clustering reveals cavitation-related acoustic emission signals from dehydrating branches[J]. Tree Physiology, 2016, 36(6): 786-796. DOI:10.1093/treephys/tpw023.
[26] BARNARD D M, MEINZER F C, LACHENBRUCH B, et al. Climate-related trends in sapwood biophysical properties in two conifers: avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance[J]. Plant, Cell and Environment, 2011, 34(4): 643-654. DOI:10.1111/j.1365-3040.2010.02269.x.
[27] ROSNER S. Characteristics of acoustic emissions from dehydrating wood related to shrinkage processes[J]. Journal of Acoustic Emission, 2007, 25(1): 149-156.
[28] PAMMENTER N W, VANDER WILLIGEN C. A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation[J]. Tree Physiology, 1998, 18(8/9): 589-593. DOI:10.1093/treephys/18.8-9.589.
[29] MAHERALI H, POCKMAN W T, JACKSON R B. Adaptive variation in the vulnerability of woody plants to xylem cavitation[J]. Ecology, 2004, 85(8): 2184-2199. DOI:10.1890/02-0538.
[30] OLIVERAS I, MARTÍNEZ-VILALTA J, JIMENEZ-ORTIZ T, et al. Hydraulic properties of Pinus halepensis, Pinus pinea and Tetraclinis articulata in a dune ecosystem of Eastern Spain[J]. Plant Ecology, 2003, 169(1): 131. DOI:10.1023/A:1026223516580.
[31] MARTI'NEZ-VILALTA J, PIÑOL J. Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula[J]. Forest Ecology and Management, 2002, 161(1): 247-256. DOI:10.1016/s0378-1127(01)00495-9.
[32] 奚如春. 油松、侧柏、元宝枫蒸腾耗水的空穴栓塞和水容调节机制[D]. 北京: 北京林业大学, 2006.
XI R C. Studies on the modulation mechanisms of water consumption of xylem cavitation and embolism and water capacitance in three tree species[D]. Beijing: Beijing Forestry University, 2006.
[33] 李秧秧, 石辉, 邵明安. 黄土丘陵区乔灌木叶水分利用效率及与水力学特性关系[J]. 林业科学, 2010, 46(2): 67-73. DOI:10.11707/j.1001-7488.20100212.
LI Y Y, SHI H, SHAO M A. Leaf water use efficiency and its relationship with hydraulic characteristics in eight dominant trees and shrubs in loess hilly area during vegetation succession[J]. Scientia Silvae Sinicae, 2010, 46(2): 67-73.
[34] 申卫军, 张硕新, 刘立科. 几种木本植物木质部栓塞的日变化[J]. 西北林学院学报, 1999, 14(1): 22-27. DOI:10.3969/j.issn.1001-7461.1999.01.005.
SHEN W J, ZHANG S X, LIU L K. Diurnal variation of xylem embolism in some woody plants[J]. Journal of Northwest Forestry University, 1999, 14(1): 22-27.
[35] 申卫军, 张硕新, 金燕. 几种木本植物木质部栓塞的季节变化[J]. 西北林学院学报, 1999, 14(1): 28-32. DOI:10.3969/j.issn.1001-7461.1999.01.006.
SHEN W J, ZHANG S X, JIN Y. Seasonal variation of xylem embolism in some woody plants[J]. Journal of Northwest Forestry University, 1999, 14(1): 28-32.
[36] 安锋, 张硕新. 7种木本植物根和小枝木质部栓塞的脆弱性[J]. 生态学报, 2005, 25(8): 1928-1933. DOI:10.3321/j.issn:1000-0933.2005.08.014.
AN F, ZHANG S X. Studies of roots and shoots vulnerability to xylem embolism in seven woody plants[J]. Acta Ecologica Sinica, 2005, 25(8): 1928-1933.
[37] 成俊卿, 杨家驹, 刘鹏. 中国木材志[M]. 北京: 中国林业出版社, 1992.
CHENG J Q, YANG J J, LIU P. Woods of China[M]. Beijing: China Forestry Publishing House, 1992.
[38] VERGEYNST L L, DIERICK M, BOGAERTS J A, et al. Cavitation: a blessing in disguise? new method to establish vulnerability curves and assess hydraulic capacitance of woody tissues[J]. Tree Physiology, 2015, 35(4): 400-409. DOI:10.1093/treephys/tpu056.
[39] WOLKERSTORFER S V, ROSNER S, HIETZ P. An improved method and data analysis for ultrasound acoustic emissions and xylem vulnerability in conifer wood[J]. Physiologia Plantarum, 2012, 146(2): 184-191. DOI:10.1111/j.1399-3054.2012.01605.x.
[40] YAMAMOTO H, SASSUS F, NINOMIYA M, et al. A model of anisotropic swelling and shrinking process of wood. Part 2. a simulation of shrinking wood [J]. Wood Science and Technology, 2001, 35(1): 167-181. DOI:10.1007/s002260000074.
[41] ROSNER S, KLEIN A, MÜLLER U, et al. Hydraulic and mechanical properties of young Norway spruce clones related to growth and wood structure[J]. Tree Physiology, 2007, 27(8): 1165-1178. DOI:10.1093/treephys/27.8.1165.
[42] JOHNSON D M, MEINZER F C, WOODRUFF D R, et al. Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species[J]. Plant, Cell and Environment, 2009, 32(7): 828-836. DOI:10.1111/j.1365-3040.2009.01961.x.
[43] 丁小康, 张祥雪, 郝燕华, 等. 木材干燥过程中声发射信号分析[J]. 木材工业, 2012, 26(3): 40-43. DOI:10.3969/j.issn.1001-8654.2012.03.011.
DING X K, ZHANG X X, HAO Y H, et al. Acoustic emission analysis during drying small thin wood samples[J]. China Wood Industry, 2012, 26(3): 40-43.
[44] 李秧秧, 石辉, 邵明安. 黄土丘陵区典型树木抵抗空穴化能力及与木质部结构的关系[J]. 北京林业大学学报, 2010, 32(3): 8-13. DOI:10.13332/j.1000-1522.2010.03.029.
LI Y Y, SHI H, SHAO M A. Cavitation resistance of dominant trees and shrubs in loess hilly region and their relationship with xylem structure[J]. Journal of Beijing Forestry University, 2010, 32(3): 8-13.
[45] 李荣, 党维, 蔡靖, 等. 6个耐旱树种木质部结构与栓塞脆弱性的关系[J]. 植物生态学报, 2016, 40(3): 255-263. DOI:10.17521/cjpe.2015.0260.
LI R, DANG W, CAI J, et al. Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees[J]. Chinese Journal of Plant Ecology, 2016, 40(3): 255-263.
[46] 张硕新, 申卫军, 张远迎. 六种木本植物木质部栓塞化生理生态效应的研究[J]. 生态学报, 2000, 20(5): 788-794. DOI:10.3321/j.issn:1000-0933.2000.05.013.
ZHANG S X, SHEN W J, ZHANG Y Y. Ecophysiological effect of xylem embolism in six tree species[J]. Acta Ecologica Sinica, 2000, 20(5): 788-794.
[47] 左力翔, 李俊辉, 李秧秧, 等. 散孔材与环孔材树种枝干、叶水力学特性的比较研究[J]. 生态学报, 2012, 32(16): 5087-5094. DOI:10.5846/stxb201110281610.
ZUO L X, LI J H, LI Y Y, et al. Comparison of hydraulic traits in branches and leaves of diffuse-and ring-porous species[J]. Acta Ecologica Sinica, 2012, 32(16): 5087-5094. |