南京林业大学学报(自然科学版) ›› 2018, Vol. 42 ›› Issue (02): 67-74.doi: 10.3969/j.issn.1000-2006.201706040
刘明慧1,孙 雪1,于文杰2,秦立武2,冯富娟1
出版日期:
2018-04-12
发布日期:
2018-04-12
基金资助:
LIU Minghui1, SUN Xue1,YU Wenjie2,QIN Liwu2, FENG Fujuan1*
Online:
2018-04-12
Published:
2018-04-12
摘要: 【目的】研究长白山原始红松林土壤可溶性有机碳(dissolved organic carbon, DOC)、微生物生物量碳(microbial biomass carbon, MBC)、易氧化碳(easily oxidized organic carbon, EOC)的含量随海拔变化的垂直地带性规律、生长季动态及差异机制。【方法】以长白山海拔699~1 177 m的原始红松阔叶林为对象,以100 m为间隔选择原始红松林,同一海拔设置3块重复样地,在每个样地内选取10个随机观察样方(15 cm×15 cm)。分析0~20 cm表层土中土壤3种活性有机碳的含量随海拔及生长季的动态变化。【结果】原始红松林土壤DOC含量随海拔升高而增大,EOC含量除在1 177 m处较低外,在海拔699~1 044 m间整体上呈现出高海拔处大于低海拔的趋势; MBC含量仅在5、6月表现为低海拔处大于高海拔,其他月份也呈现出与EOC相同的规律。3种活性有机碳占土壤总有机碳(total organic carbon, TOC)比例分别在0.10%~1.45%、0.08%~2.18%和5.20%~69.18%之间,随海拔变化规律与其含量变化规律相似。在5—10月的生长季内,3种土壤活性有机碳含量及占TOC比例在月份间差异显著(P<0.05)。土壤DOC含量最高值出现在9月,MBC含量在6月和9月较高,EOC含量的最高值则出现在5月和6月。土壤活性有机碳各组分含量与土壤有效氮、有效磷、有效钾、pH、含水率、容重的相关性均达到显著水平(P<0.05),且与土壤含水率的相关性最强(r = 0.835)。【结论】处于海拔699~818 m间原始红松林的土壤有机碳库稳定性更高,土壤碳汇功能更强。土壤碳素的积累主要发生在5、7、8、10月,此期TOC分解速度较慢,土壤碳汇功能更强。森林土壤活性有机碳含量可作为衡量土壤中N、P、K动态变化的敏感性指标。
中图分类号:
刘明慧,孙雪,于文杰,等. 长白山不同海拔原始红松林土壤活性有机碳含量的生长季动态[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 67-74.
LIU Minghui, SUN Xue,YU Wenjie,QIN Liwu, FENG Fujuan. Seasonal dynamics of soil active organic carbon content in the original Pinus koraiensis forest in Changbai Mountains, China[J].Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(02): 67-74.DOI: 10.3969/j.issn.1000-2006.201706040.
[1] XU G, CHEN J, BERNINGER F, et al. Labile, recalcitrant, microbial carbon and nitrogen and the microbial community composition at two Abies faxoniana forest elevations under elevated temperatures[J]. Soil Biology and Biochemistry, 2015, 91: 1-13. [2] 许凯, 徐钰, 葛之葳, 等. 氮添加对杨树人工林土壤活性有机碳季节变化的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(3): 19-23. DOI:10.3969/j.issn.1000-2006.2014.03.004.XU K, XU Y, GE Z W, et al. Effects of nitrogen addition on the seasonal variations of soil labile organic carbon in different age poplar plantations[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2014, 38(3): 19-23. [3] 韩冬雪, 王宁, 王楠楠, 等. 不同海拔红松林土壤微生物功能多样性[J]. 应用生态学报, 2015, 26(12): 3649-3656.HAN D X, WANG N, WANG N N, et al. Soil microbial functional diversity of different altitude Pinus koraiensis forests[J]. Chinese Journal of Applied Ecology, 2015, 26(12): 3649-3656. [4] 沈宏, 曹志洪, 胡正义. 土壤活性有机碳的表征及其生态效应[J]. 生态学杂志, 1999, 18(3): 32-38.SHEN H, CAO Z H, HU Z Y. Characterization and ecological effects of soil labile organic carbon[J]. Chinese Journal of Ecology, 1999, 18(3): 32-38. [5] LI S, ZHANG S, PU Y, et al. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain[J]. Soil and Tillage Research, 2016, 155: 289-297. DOI:10.1016/j.still.2015.07.019. [6] SHANG W, WU X, ZHAO L, et al. Seasonal variations in labile soil organic matter fractions in permafrost soils with different vegetation types in the central Qinghai-Tibet Plateau[J]. Catena, 2016, 137: 670-678. [7] CHEN X, CHEN H Y H, CHEN X, et al. Soil labile organic carbon and carbon-cycle enzyme activities under different thinning intensities in Chinese fir plantations[J]. Applied Soil Ecology, 2016, 107: 162-169. DOI:10.1016/j.apsoil.2016.05.016. [8] PIGNATARO A, MOSCATELLI M C, MOCALI S, et al. Assessment of soil microbial functional diversity in a coppiced forest system[J]. Applied Soil Ecology, 2012, 62(6): 115-123. DOI:10.1016/j.apsoil.2012.07.007. [9] 李平, 王国兵, 郑阿宝, 等. 苏南丘陵区4种典型人工林土壤活性有机碳分布特征[J]. 南京林业大学学报(自然科学版), 2012, 36(4): 79-83. DOI:10.3969/j.issn.1000-2006.2012.04.016.LI P, WANG G B, ZHENG A B, et al. The variations of soil labile organic carbon in four plantations in south of Jiangsu province[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2012, 36(4): 79-83. [10] XIAO Y, HUANG Z, LU X. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China[J]. Ecological Engineering, 2015, 82: 381-389. DOI:10.1016/j.ecoleng.2015.05.015. [11] 向慧敏, 温达志, 张玲玲, 等. 鼎湖山森林土壤活性碳及惰性碳沿海拔梯度的变化[J]. 生态学报, 2015, 35(18): 6089-6099. DOI:10.5846/stxb201401230171.XIANG H M, WEN D Z, ZHANG L L, et al. Altitudinal changes in active and recalcitrant soil carbon pools of forests in the Dinghu Mountains[J]. Acta Ecologica Sinca, 2015, 35(18): 6089-6099. [12] 向成华, 栾军伟, 骆宗诗, 等. 川西沿海拔梯度典型植被类型土壤活性有机碳分布[J]. 生态学报, 2010, 30(4): 1025-1034.XIANG C H, LUAN J W, LUO Z S, et al. Labile soil organic carbon distribution on influenced by vegetation types along an elevation gradient in west Sichuan, China[J]. Acta Ecologica Sinica, 2010, 30(4): 1025-1034. [13] 徐侠, 权伟, 汪家社, 等. 武夷山不同海拔植被带土壤活性有机碳的季节变化[J]. 南京林业大学学报(自然科学版), 2009, 33(3): 55-59. DOI:10.3969/j.issn.1000-2006.2009.03.013.XU X, QUAN W, WANG J S, et al. Seasonal variations of soil microbial available carbon in four plant communities along the altitude gradient in Wuyi Mountain[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2009, 33(3): 55-59. [14] 卢慧, 丛静, 薛亚东, 等. 海拔对神农架表层土壤活性有机碳含量的影响[J]. 林业科学, 2014, 50(8): 162-167. DOI:10.11707/j.1001-7488.20140823.LU H, CONG J, XUE Y D, et al. Effects of elevation on surface layer soil active organic carbon content in Shennongjia Nature Reserve[J]. Scientia Silvae Sinicae, 2014, 50(8): 162-167. [15] 孙雪, 韩冬雪, 刘岩, 等. 原始红松林土壤理化及微生物碳代谢特征对生长季动态的响应[J]. 南京林业大学学报(自然科学版), 2018, 41(1): 1-12. DOI:10.3969/j.issn.1000-2006.201609042.SUN X, HAN D H, LIU Y, et al. Responses of soil physicochemical properties and soil microorganism characters regareding as carbon metabolism in original Korean pine forest[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2018, 41(1): 1-12. [16] 吴家兵, 关德新, 张弥, 等. 长白山阔叶红松林碳收支特征[J]. 北京林业大学学报, 2007, 29(1): 1-6.WU J B, GUAN D X, ZHANG M, et al. Carbon budget characteristics of the broadleaved Korean pine forests in Changbaishan Mountains[J]. Journal of Beijing Forestry University, 2007, 29(1): 1-6. [17] 王宁, 杨雪, 李世兰, 等. 不同海拔红松混交林土壤微生物量碳、氮的生长季动态[J]. 林业科学, 2016, 52(1): 150-158. DOI:10.11707/j.1001-7488.20160118.WANG N, YANG X, LI S L, et al. Seasonal dynamics of soil microbial biomass carbon-nitrogen in the Korean pine mixed forests along elevation gradient[J]. Scientia Silvae Sinicae, 2016, 52(1): 150-158. [18] 景莎, 田静, MCCORMACK M L, 等. 长白山原始阔叶红松林土壤有机质组分小尺度空间异质性[J]. 生态学报, 2016, 36(20): 6445-6456. DOI:10.5846/stxb201503310626.JING S, TIAN J, MCCORMACK M L, et al. Small-scale spatial heterogeneity of soil organic matter fractions within an original broad-leaved Korean pine forest in Changbai Mountain[J]. Acta Ecologica Sinica, 2016, 36(20): 6445-6456. [19] DENG Q, CHENG X, HUI D, et al. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China[J]. Science of the Total Environment, 2015, 541: 230-237. DOI:10.1016/j.scitotenv.2015.09.080. [20] WANG Q K, WANG S L, DENG S J. Comparative study on active soil organic matter in Chinese fir plantation and native broad-leaved forest in subtropical China[J]. Journal of Forestry Research, 2005, 16(1): 23-26. DOI:10.1007/bf02856848. [21] FANG C, SMITH P, MONCRIEFF J B, et al. Similar response of labile and resistant soil organic matter pools to changes in temperature[J]. Nature, 2005, 433: 57-59. DOI:10.1038/nature03138. [22] XU X, ZHOU Y, RUAN H, et al. Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China[J]. Soil Biology and Biochemistry, 2010, 42(10): 1811-1815. DOI:10.1016/j.soilbio.2010.06.021. [23] 张仕吉. 湘中丘陵区不同土地利用方式土壤养分及碳库特征研究[D]. 长沙: 中南林业科技大学, 2015.ZHANG S J. Characteristics of different land-use types, soil nutrient, and carbon pool in the hill region of central Hunan[D]. Changsha: Central South University of Forest and Technology, 2015. [24] SAGGAR S, YEATES G W, SHEPHERD T G. Cultivation effects on soil biological properties, microfauna and organic matter dynamics in Eutric Gleysol and Gleyic Luvisol soils in New Zealand[J]. Soil and Tillage Research, 2001, 58(1/2): 55-68. DOI: 10.1016/S0167-1987(00)00184-7. [25] 肖烨, 黄志刚, 武海涛, 等. 三江平原不同湿地类型土壤活性有机碳组分及含量差异[J]. 生态学报, 2015, 35(23): 7625-7633. DOI: 10.5846 /stxb201405060894.XIAO Y, HUANG Z G, WU H T, et al. Compositions and contents of active organic carbon in different wetland soils in Sanjiang Plain, Northeast China[J]. Acta Ecologica Sinica, 2015, 35(23): 7625-7633. [26] 辜翔, 张仕吉, 项文化, 等. 中亚热带4种森林类型土壤活性有机碳的季节动态特征[J]. 植物生态学报, 2016, 40(10): 1064-1076. DOI: 10.17521/cjpe.2015.0412.GU X, ZHANG S J, XIANG W H, et al. Seasonal dynamics of active soil organic carbon in four subtropical forests in Southern China[J]. Chinese Journal of Plant Ecology, 2016, 40(10): 1064-1076. [27] 王棣, 耿增超, 佘雕, 等. 秦岭典型林分土壤活性有机碳及碳储量垂直分布特征[J]. 应用生态学报, 2014, 25(06): 1569-1577.WANG D, GENG Z C, SHE D, et al. Vertical distribution of soil active carbon and soil organic carbon storage under different forest types in the Qinling Mountains[J]. Chinese Journal of Applied Ecology, 2014, 25(06): 1569-1577. [28] 田松岩, 刘延坤, 沃晓棠, 等. 小兴安岭3种原始红松林的土壤有机碳研究[J]. 北京林业大学学报, 2014, 36(5): 33-38. DOI: 10. 13332 /j. cnki. Jbfu. 2014. 05. 015.TIAN S Y, LIU Y K, WO X T, et al. Organic carbon of soil in three original Pinus koraiensis forests in Xiaoxing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2014, 36(5): 33-38. [29] 黄黎英, 曹建华, 周莉, 等. 不同地质背景下土壤溶解有机碳含量的季节动态及其影响因子[J]. 生态环境, 2007, 16(4): 1282-1288. DOI:10.16258/j.cnki.1674-5906.2007.04.032.HUANG L Y, CAO J H, ZHOU L, et al. Seasonal dynamics of dissolved organic carbon in soil under different geological backgrounds and its influencing factors[J]. Ecology and Environment, 2007, 16(4): 1282-1288. [30] IQBAL J, HU R, FENG M, et al. Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: a case study at Three Gorges Reservoir Area, South China[J]. Agriculture, Ecosystems & Environment, 2010, 137(3-4): 294-307. DOI:10.1016/j.agee.2010.02.015. [31] WARREN N, ZOU X. Seasonal nitrogen retention in temperate hardwood forests: The “Vernal Dam” hypothesis and case studies[J]. Acta Phytoecologica Sinica, 2003, 27(1): 11-15. DOI: 10.17521/cjpe.2003.0002. [32] BUCKERIDGE K M, BANERJEE S, SICILIANO S D, et al. The seasonal pattern of soil microbial community structure in mesic low arctic tundra[J]. Soil Biology and Biochemistry, 2013, 65: 338-347. DOI:10.1016/j.soilbio.2013.06.012. [33] 张剑, 汪思龙, 王清奎, 等. 不同森林植被下土壤活性有机碳含量及其季节变化[J]. 中国生态农业学报, 2009, 17(1): 41-47.ZHANG J, WANG S L, WANG Q K, et al. Content and seasonal change in soil labile organic carbon under different forest covers[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1): 41-47. [34] RUTIGLIANO F A, D’ASCOLI R, VIRZO DE SANTO A. Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover[J]. Soil Biology and Biochemistry, 2004, 36(11): 1719-1729. DOI:10.1016/j.soilbio.2004.04.029. [35] 唐国勇, 黄道友, 童成立, 等. 红壤丘陵景观单元土壤有机碳和微生物生物量碳含量特征[J]. 应用生态学报, 2006, 17(3): 3429-3433. DOI:10.13287/j.1001-9332.2006.0088.TANG G Y, HUANG D Y, TONG C L, et al. Characteristics of soil organic carbon and microbial biomass carbon in hilly red soil region[J]. Chinese Journal of Applied Ecology, 2006, 17(3): 3429-3433. [36] 田松岩, 刘延坤, 沃晓棠, 等. 采样尺度对北京山区典型流域森林土壤养分空间变异的影响——以密云潮关西沟流域为例[J]. 林业科学, 2010, 46(10): 162-166.TIAN S Y, LIU Y K, WO X T, et al. Effect of sampling scale on spatial variability of forest soil nutrient in typical watershed with Miyun Chaoguan West Watershed for example[J]. Scientia Silvae Sinicae, 2010, 46(10): 162-166. |
[1] | 杨永. 裸子植物的系统分类:历史、现状和展望[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 14-26. |
[2] | 张瑞, 周正虎, 王传宽, 金鹰. 东北温带森林不同材性树种木质部解剖和水力性状[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 229-236. |
[3] | 黄永健, 荀航, 张保, 尤俊昊, 姚曦, 汤锋. HPLC同时测定竹笋中8种酚酸类物质含量的方法研究及其应用[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 237-244. |
[4] | 邓云飞. 安息香科的系统学研究进展[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 27-35. |
[5] | 李家亮, 巫大宇, 毛康珊. 柏木属的分类地位和物种多样性研究现状与建议[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 36-45. |
[6] | 李涌福, 杨庆华, 陈林, 张敏, 向其柏, 王贤荣, 段一凡. 木犀属内分组关系的分类修订[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 58-62. |
[7] | 杨皓, 刘超, 庄家尧, 张树同, 张文韬, 毛国豪. 不同载体菌肥对紫穗槐生长和光合特性及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 81-89. |
[8] | 丁咏, 刘鑫, 张金池, 王宇浩, 陈美玲, 李涛, 刘孝武, 周悦湘, 孙连浩, 廖艺. 酸雨类型转变对杉木林地土壤和细根生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 90-98. |
[9] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[10] | 卜晓婷, 付威, 李淑娴, 徐志标, 彭大庆, 徐林桥. 幼化和外源激素对娜塔栎嫩枝扦插生根的影响及其生根解剖学观察[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 129-136. |
[11] | 杜晋城, 李欣欣, 王泽亮, 刘偲, 钟毅, 王丽华. 聚乙二醇胁迫下3个油橄榄品种生理指标响应[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 137-143. |
[12] | 方静, 张书曼, 严善春, 武帅, 赵佳齐, 孟昭军. 两种丛枝菌根真菌复合接种对青山杨叶片抗美国白蛾的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 144-154. |
[13] | 张馨方, 王广鹏, 张树航, 李颖, 郭燕. 不同抗螨性板栗差异次生代谢物筛选与分析[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 234-240. |
[14] | 杨宏, 伊贤贵, 王贤荣, 吴桐, 周华近, 陈洁, 李蒙, 朱兆青. 樱花新品种‘元春’[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 275-276. |
[15] | 田梦阳, 朱树林, 窦全琴, 季艳红. 薄壳山核桃-茶间作对‘安吉白茶’速生期光合特性的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 86-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||