南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (01): 32-38.doi: 10.3969/j.issn.1000-2006.20186025
任 丽,董京祥,杨 洋,黄海娇,李慧玉*
出版日期:
2019-01-28
发布日期:
2019-01-28
基金资助:
REN Li,DONG Jingxiang,YANG Yang,HUANG Haijiao,LI Huiyu*
Online:
2019-01-28
Published:
2019-01-28
摘要: 【目的】研究BpTCP7启动子的表达模式,为深入分析BpTCP7基因功能提供一定参考。【方法】克隆了BpTCP7基因上游1 791 bp启动子序列,通过PLACE和Plant CARE网址对顺式作用元件进行分析,然后转入拟南芥,并分析BpTCP7启动子的组织表达特性及盐、旱胁迫应答反应。【结果】BpTCP7启动子序列中含有与细胞周期、开花、叶片发育、激素及胁迫响应等相关的顺式作用元件。该启动子在拟南芥中的表达模式呈现为营养生长阶段和生殖生长阶段均有表达,且在叶片中表达明显,与此同时,BpTCP7启动子在幼嫩、成熟叶片的边缘均有表达。与对照相比,NaCl、PEG胁迫诱导处理后BpTCP7基因表达量有升高的现象。【结论】BpTCP7基因参与白桦的叶片发育、激素应答、胁迫响应(盐、干旱)等生物学过程,对营养、生殖生长阶段各组织器官的发育也有一定的调控作用。
中图分类号:
任丽,董京祥,杨洋,等. 白桦BpTCP7基因启动子的克隆及表达分析[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 32-38.
REN Li,DONG Jingxiang,YANG Yang,HUANG Haijiao,LI Huiyu. Cloning and expression analysis of BpTCP7 promoter from Betula platyphylla[J].Journal of Nanjing Forestry University (Natural Science Edition), 2019, 43(01): 32-38.DOI: 10.3969/j.issn.1000-2006.20186025.
[1] DOEBLEY J,STEC A,HUBBARD L.The evolution of apical in maize[J].Nature,1997,386(6624):485-488. DOI: 10.1038/386485a0. [2] LUO D,CARPENTER R,VINCENT C,et al.Origin of floral asymmetry in Antirrhinum[J].Nature,1996, 383(6603): 794-799. DOI: 10.1038/383794a0. [3] KOSUGI S,OHASHI Y.PCF1 and PCF2 specifically bind to cis elements in the rice PROLIFERATING CELL NUCLEAR ANTIGEN gene[J].Plant Cell,1997,9(9):1607-1619. DOI: 10.1105/tpc.9.9.1607. [4] CUBAS P,LAUTER N,DOEBLEY J,et al.The TCP domain: a motif found in proteins regulating plant growth and development[J].The Plant Journal,1999, 18(2):215-222. [5] KOSUGI S,OHASHI Y.DNA binding and dimerization specificity and potential targets for the TCP protein family[J].The Plant Journal,2002, 30(3):337-348. [6] LI C,POTUSCHAK T,COLóN-CARMONA A,et al. Arabidopsis TCP20 links regulation of growth and cell division control pathways[J].Proceedings of the National Academy of Sciences of the United States of America,2005, 102(36):12978-12983. DOI: 10.1073/pnas.0504039102. [7] HOWARTH D G,DONOGHUE M J.Phylogenetic analysis of the "ECE"(CYC/TB1)clade reveals duplications predating the core eudicots[J]. Proceedings of the National Academy of Sciences,2006,103(24):9101-9106. DOI: 10.1073/pnas.0602827103. [8] NAVAUD O, DADOS P, CARNUS E, et al.TCP transcription factors predate the emergence of land plants[J].Journal of Molecular Evolution, 2007,65(1):23-33. DOI: 10.1007/s00239-006-0174-z. [9] DAMERVAL C,LE GUILLOUX M,JAGER M,et al.Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae[J].Plant Physiology,2007,143(2):759-772. DOI: 10.1104/pp.106.090324. [10] GAO Y,ZHANG D,LI J.TCP1 modulates DWF4 expression via directly interacting with the GGNCCC motifs in the promoter rejion of Arabidopsis thaliana[J].Journal of Genetics and Genomics,2015,42(7):383-392. DOI: 10.1016/j.jgg.2015.04.009. [11] WELCHEN E,GONZALEZ D H.Overrepresentation of elements recognized by TCP-domain transcription factors in the upstream regions of nuclear genes encoding components of the mitochondrial oxidative phosphorylation Machinery[J].Plant Physiology,2006,141(2): 540-545. DOI: 10.1104/pp.105.075366. [12] AGUILAR-MARTíNEZ J A,POZA-CARRIóN C,CUBAS P.Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds[J].The Plant Cell Online,2007,19(2):458-472. DOI: 10.1105/tpc.106.048934. [13] DAVIèRE J M, WILD M, REGNAULT T, et al. Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height[J]. Current Biology Cb, 2014, 24(16):1923-1928. DOI: 10.1016/j.cub.2014.07.012. [14] CRAWFORD B C,NATH U,CARPENTER R,et al.CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum[J].Plant Physiol,2004,135(1):244-253. DOI: 10.1104/pp.103.036368. [15] GIRAUD E,NG S,CARRIE C,et al.TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana[J].Plant Cell,2010,22(12):3921-3924. DOI: 10.1105/tpc.110.074518. [16] TATEMATSU K,NAKABAYASHI K,KAMIYA Y,et al.Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana [J].Plant J,2008,53(1):42-52. DOI: 10.1111/j.1365-313X.2007.03308.x. [17] NATH U, CRAWFORD B C W, CARPENTER R, et al. Genetic control of surface curvature[J]. Science, 2003, 299(5611):1404-1407. DOI: 10.1126/science.1079354. [18] MASUDA H P, CABRAL L M, VEYLDER L D, et al.ABAP1 is a novel plant Armadillo BTB protein involved in DNA replication and transcription[J]. Embo Journal, 2014, 27(20):2746-2756. DOI: 10.1038/emboj.2008.191. [19] SCHOMMER C,PALATNIK J F,AGGARWAL P,et al.Control of jasmonate biosynthesis and senescence bymiR319 targets[J].PLoS Biol,2008, 6(9):e230. DOI: 10.1371/journal.pbio.0060230. [20] KOYAMA T,FURUTANI M,TASAKA M,et al.TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis[J].Plant Cell,2007,19(2):473-484. DOI: 10.1105/tpc.106.044792. [21] ORI N,COHEN A R,ETZIONI A,et al.Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato[J].Nature Genetics,2007,39(6):787-791. DOI: 10.1038/ng2036. [22] NATH U,AGGRAWAL P,CHALLA K R.Activation of YUCCA5 by the transcription factor TCP4 integrates developmental and environmental signals to promote hypocotyl elongation in Arabidopsis[J].Plant Cell,2016, 28: 2117-2130. DOI: 10.1105/tpc.16.00360. [23] DANISMAN S,VAN DER WAL F,DHONDT S,et al.Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically[J].Plant Physiol,2012,159(4):1511-1523. DOI: 10.1104/pp.112.200303. [24] LI S,ZACHGO S.TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana[J].The Plant Journal,2013,76(6):901-913. DOI: 10.1111/tpj.12348. [25] WANG S T,SUN X L,HOSHINO Y,et al.MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice( Oryza sativa L.)[J].PLoS One,2014,9(3):e91357. DOI: 10.1371/journal.pone.0091357. [26] GUAN P,RIPOLL J J,WANG R,et al.Interacting TCP and NLP transcription factors control plant responses to nitrate availability[J]. Proc Natl Acad Sci USA,2017,114(9):2419-2424. DOI: 10.1073/pnas.1615676114. [27] HIGO K, UGAWA Y, IWAMOTO M, et al. Plant cis-acting regulatory DNA elements(PLACE)database: 1999[J]. Nucleic Acids Research, 1999, 27(1):297-300. [28] POSTEL D, VANLEMMENS P, GODE P, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1):325-327. [29] CLOUGH S J, BENT A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant Journal, 2010, 16(6):735-743. [30] LI C, JIANG B, WU C, et al. The characterization of GmTIP, a root-specific gene from soybean, and the expression analysis of its promoter[J]. Plant Cell Tissue & Organ Culture, 2015, 121(2):259-274. DOI: 10.1007/s11240-014-0682-2. [31] MUKHOPADHYAY P, TYAGI A K.OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways[J]. Sci Rep, 2015, 5:9998. DOI: 10.1038/srep12381. |
[1] | 马坛, 田野, 王书军, 李文昊, 段启英, 张庆源. 不同性别南方型黑杨无性系叶片对土壤短期间歇性干旱的生理响应[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 172-180. |
[2] | 王改萍, 章雷, 曹福亮, 丁延朋, 赵群, 赵慧琴, 王峥. 红蓝光质对银杏苗木生长生理特性及黄酮积累的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 105-112. |
[3] | 宋子琪, 卞国良, 林峰, 胡凤荣, 尚旭岚. 流式细胞仪鉴定青钱柳倍性方法的建立及其应用[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 61-68. |
[4] | 孙旭高, 陶家璐, 谢微, 石洁, 张宝津, 邓小梅. 米老排优树组培技术体系优化研究[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 69-78. |
[5] | 顾宸瑞, 袁启航, 姜静, 穆怀志, 刘桂丰. 基于转录组测序的关联分析定位裂叶桦叶形调控基因[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 39-46. |
[6] | 杨蕴力, 曹俐, 王阳, 顾宸瑞, 陈坤, 刘桂丰. BpGLK1基因干扰表达对裂叶桦叶色及生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 18-28. |
[7] | 王伟, 邱志楠, 李爽, 白向东, 刘桂丰, 姜静. CRISPR/Cas9核糖核蛋白介导的无T-DNA插入的白桦BpGLK1精准突变[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 11-17. |
[8] | 国颖, 杨港归, 吴雨涵, 何杰, 何玉洁, 廖浩然, 薛良交. DNA甲基化调控植物组织培养过程的分子机制研究进展[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 1-8. |
[9] | 陈俊娜, 王晓宇, 陈晨, 彭辉武, 陈娟, 黄卫和, 喻方圆. BR对东京野茉莉种子中脂肪酸合成相关酶活性及油脂积累的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 35-41. |
[10] | 宫楠, 祖鑫, 解志军, 朱长红, 李淑娴. 紫荆种子吸胀和层积过程中不同相态水分变化的核磁共振检测[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 42-50. |
[11] | 王章荣, 季孔庶, 徐立安, 邹秉章, 林能庆, 林景泉. 马尾松实生种子园营建技术、现实增益及多世代低成本经营新模式探讨[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 9-16. |
[12] | 欧阳, 欧阳芳群, 孙猛, 王超, 王军辉, 安三平, 王丽芳, 许娜, 王猛. 欧洲云杉无性系幼龄生长节律、年度和密度互作效应及选择策略[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 95-104. |
[13] | 罗芊芊, 李峰卿, 肖德卿, 邓章文, 王建华, 周志春. 两个南方红豆杉天然居群的交配系统分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 80-86. |
[14] | 郭伟, 韩秀, 张利, 王迎, 杜辉, 燕语, 孙忠奎, 张林, 李国华, 罗磊. 青檀扦插苗对不同氮素水平的形态、光合生理响应和转录组分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 87-96. |
[15] | 刘蓉, 吴德军, 王因花, 任飞, 李丽, 燕丽萍, 周晓锋. 白蜡花粉最佳离体萌发培养基筛选[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 70-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||