南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (02): 100-106.doi: 10.3969/j.issn.1000-2006.201803029
周子尧,吴永波*,余昱莹,杨 静
出版日期:
2019-03-30
发布日期:
2019-03-30
基金资助:
ZHOU Ziyao, WU Yongbo*, YU Yuying, YANG Jing
Online:
2019-03-30
Published:
2019-03-30
摘要: 【目的】河岸植被缓冲带可以有效截留和吸收地表径流水中的磷素,从而减少进入湖泊水体中的磷。笔者在平缓坡地上构建适宜的植被缓冲带并研究其生态效果,为减缓农业面源污染、生态修复富营养化湖泊提供参考。 【方法】选定太湖流域4块大小为20 m×50 m不同密度的杨树林河岸缓冲带为研究对象,在缓冲带不同宽度处地面下不同深度(20、40和60 cm)处平行埋设PVC管,每个宽度分别设置3组淋溶管作为重复,每组3个,作为地表径流水的收集装置。分别于4、5、6、7、9月强降雨后采集水样,低温保存并测定其中磷素质量浓度。分析不同季节各宽度和密度的杨树林缓冲带截留径流水中磷素的差异,以确定适宜的河岸人工林缓冲带。【结果】① 7月径流水中可溶性磷(DP)、总磷(TP)去除率达到最大值(36.91%、26.50%),PO3-4去除率在6月达到63.30%,4、9月3种不同形态磷的去除率相比6、7月有所下降,不同月份PO3-4、DP、TP质量浓度呈显著性差异(P<0.05,F=2.382,2.052,2.758,df=180),去除率与时间呈极显著相关(P<0.01; F=3.464,3.265,3.279; df=180)。② 径流水中污染物去除率与缓冲带密度并不呈简单的正比例关系。稀植杨树林河岸缓冲带杨树数量稀少,截留污染物能力不足; 密植杨树林河岸缓冲带由于栽植密度较大,不利于杨树自由生长,吸收含磷污染物效果不佳。栽植密度并非越大越好,而是存在一个适宜栽植密度阈值。③ 随着河岸缓冲带宽度的增加,径流水中PO3-4、DP、TP质量浓度呈现下降趋势,截留率呈现上升趋势。河岸缓冲带对PO3-4的去除率最高,其次是TP,DP效果最差。不同宽度的缓冲带对20 cm深度径流水中PO3-4、DP的去除率较高,对40 cm深度的径流水中TP去除率总体高于20 cm深度的,60 cm深度径流水中PO3-4、DP、TP的去除率最低。在不同深度径流水中的3种磷素质量浓度在杨树缓冲带前15 m宽度变化差异显著(P<0.05; F=3.232,2.808,2.175; df=180); 之后随着宽度增加径流水中PO3-4、DP、TP的质量浓度变化不显著。15 m宽度的缓冲带对径流水中磷素平均去除率接近50 m宽度缓冲带的,说明15 m宽度的缓冲带基本能满足截污需求。【结论】杨树人工林河岸缓冲带在夏季对径流水中磷素的截留效果较好; 中等密度人工林缓冲带对径流水中磷素有较高去除率,但不同密度杨树林对于径流水中磷素截留差异并不显著; 15 m宽度的河岸缓冲带可以有效去除径流水中的各形态磷。含磷污染物只是造成湖泊湿地富营养化因素之一,合理的河岸缓冲带还应考虑对于其他污染物的截留作用。由于磷能促进植物苗期根系生长,因此在植物生长初期对磷的去除率较大。随着植物的生长和植物群落演替,磷素截留效率的动态变化尚有待长期的观测研究,以利于更为准确地评价其截留磷的能力。
中图分类号:
周子尧,吴永波,余昱莹,等. 河岸杨树人工林缓冲带对径流水中磷素截留效果的研究[J]. 南京林业大学学报(自然科学版), 2019, 43(02): 100-106.
ZHOU Ziyao, WU Yongbo, YU Yuying, YANG Jing. Effects of riparian poplar plantation buffer strips on phosphorus removal in runoff water[J].Journal of Nanjing Forestry University (Natural Science Edition), 2019, 43(02): 100-106.DOI: 10.3969/j.issn.1000-2006.201803029.
[1] 赵家星, 吴磊, 吕锡武,等.太湖湖滨缓冲带农田初雨径流的氮磷流失特征[J].中国水土保持,2013(5):50-53. DOI:10.14123/j.cnki.swcc.2013.05.002. ZHAO J X,WU L,LV X W, et al. Loss of nitrogen and phosphorus in early rainfall runoff from lakeside buffer zone in Lake Taihu[J]. Soil and Water Conservation in China, 2013(5):50-53. [2] SENEVIRATNE S, PAL J, ELTAHIR E, et al. Summer dryness in a warmer climate: a process study with a regional climate model [J].Climate Dynamics,2002, 20(1):69-85. DOI: 10.1007/s00382-002-0258-4. [3] 朱颖, 吴永波, 李文霞,等. 河岸人工林缓冲带截留磷素能力及适宜宽度[J].东北林业大学学报,2016,44(12):31-36,41. DOI:10.13759/j.cnki.dlxb.2016.12.007. ZHU Y, WU Y B, LI W X,et al. Phosphorus retention capacities and fitting width of different riparian plantation buffer strips[J]. Journal of Northeast Forestry University, 2016,44(12):31-36,41. [4] 秦东旭, 吴耕华, 刘煜,等.不同类型河岸缓冲带水质净化效果研究[J].水土保持应用技术,2017(4):1-3. DIO:10.3969/j.issn.1673-5366.2017.04.01. QIN D X,WU G H,LIU Y, et al. Study on water purification effect of different types of riparian buffer strips[J]. Technology of Soil and Water Conservation, 2017(4):1-3. [5] WEISSTEINER C J, BOURAOUI F, ALOE A. Reduction of nitrogen and phosphorus loads to European rivers by riparian buffer zones [J]. Knowledge and Management of Aquatic Ecosystems, 2013,408(8): 1-15. DOI: 10.1051/kmae/2013044. [6] 赵满兴, 周建斌, 陈竹君,等.不同类型农田土壤对可溶性有机氮、碳的吸附特性[J].应用生态学报, 2008,19(1):76-80.DOI:10.13287/j.1001-9332.2008.0020. ZHAO M X, ZHOU J B,CHEN Z J, et al. Adsorption characteristics of soluble organic carbon and nitrogen in two cultivated soils[J]. Chinese Journal of Applied Ecology, 2008,19(1):76-80. [7] SCHULTZ R C, ISENHART T M, SIMPKINS W W, et al. Riparian forest buffers in agroecosystems-lessons learned from the Bear Creek Watershed, Central Iowa, USA[J]. Agroforestry Systems, 2004, 61:35-50. DOI: 10.1023/B:AGFO.0000028988.67721.4d. [8] SCHOONOVER J E, WILLIARD K W J, ZACZEK J J, et al. Agricultural sediment reduction by giant cane and forest riparian buffers[J]. Water Air & Soil Pollution, 2006, 169(1/4):303-315. DOI: 10.1007/s11270-006-3111-2. [9] HEINEN M, NOIJ I G, HEESMANS H I, et al. A novel method to determine buffer strip effectiveness on deep soils [J].Journal of Environmental Quality, 2012, 41(2):334-347.DOI: 10.2134/jeq2010.0452. [10] HEFTING M M,CLEMENT J C,BIENKOWSKI P, et al. The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe [J].Ecological Engineering,2005,24(5):465-482.DOI:10.1016/j.ecoleng.2005.01.003. [11] 汤家喜,孙丽娜,孙铁珩,等.河岸缓冲带对氮磷的截留转化及其生态恢复研究进展[J].生态环境学报,2012,21(8):1514-1520. DOI:10.16258/j.cnki.1674-5906.2012.08.024. TANG J X, SUN L N, SUN T H, et al.Advances in study on nitrogen and phosphorus interception and transformation and ecological restoration in riparian buffer zone [J].Ecology and Environmental Sciences, 2012, 21(8):1514-1520. [12] 吴建强.不同坡度缓冲带滞缓径流及污染物去除定量化[J].水科学进展,2011,22(1):112-117. DOI:CNKI:32-1309/P.20110114.1730.004. WU J Q. Quantification of delayed runoff and pollutant removal in different slope buffer zones [J]. Advances in Water Science, 2011,22(1):112-117. [13] 侯利萍,何萍, 钱金平,等. 河岸缓冲带宽度确定方法研究综述[J].湿地科学,2012,10(4):500-506. DOI:10.13248/j.cnki.wetlandsci.2012.04.010. HOU L P, HE P, QIAN J P, et al. A review on determination methods for width of riparian buffer [J]. Wetland Science, 2012, 10(4):500-506. [14] 吴永波. 河岸植被缓冲带减缓农业面源污染研究进展[J].南京林业大学学报(自然科学版),2015,39(3): 143-148. DOI:10.3969/j.issn.1000-2006.2015.03.026. WU Y B. Research progress on the riparian vegetation buffer strip functions on agricultural nonpoint source [J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2015, 39(3): 143-148. [15] 陈航,杨栋,华玉妹,等.河岸草本缓冲带对模拟径流中污染物的净化[J].环境工程,2017,35(5):1-5.DOI:10. 13205/j.hjgc.201705001. CHEN H,YANG D,HUA Y M, et al. Purifying ability of riparian pasture buffer strips for pollutants [J]. Environmental Engineering, 2017,35(5):1-5. [16] 苗青,施春红,胡小贞,等.不同草皮构建的湖泊缓冲带对污染物的净化效果研究[J].环境污染与防治,2013,35(2):22-27,33. DOI:10.15985/j.cnki.1001-3865.2013.02.008. MIAO Q,SHI C H,HU X Z, et al. Purification effect of sward buffer strips of lake to runoff and seepage pollutants[J]. Environmental Pollution & Control, 2013,35(2):22-27,33. [17] 雷立改,马晓珍,魏福祥,等. 水中总氮、总磷测定方法的研究进展[J].河北工业科技,2011,28(1):72-76. LEI L G, MA X Z, WEI F X, et al. Research progress of determination of total nitrogen and total phosphorus in seawater[J]. Hebei Journal of Industrial Science and Technology,2011,28(1):72-76. [18] 高励珍,郝茜,张术杰.分光光度法测定氯化稀土、碳酸轻稀土中磷酸根量[J].稀土,2016,37(1):116-120. DOI:10.16533/J.CNKI.15-1099/TF.201601019. GAO L Z,HAO Q,ZHANG S J. Determination of phosphorus radicle content in rare earth chloride and light rare earth carbonate by phosphorus-antimonate-molybdenum blue spectrophotometric [J].Chinese Rare Earths, 2016,37(1):116-120. [19] 李萍萍, 崔波, 付为国,等. 河岸带不同植被类型及宽度对污染物去除效果的影响[J].南京林业大学学报(自然科学版), 2013, 37(6): 47-52. LI P P, CUI B, FU W G, et al. Effects of riparian buffer vegetation types and width on pollutant removal [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(6): 47-52. [20] 高源, 姚淑艳, 高杨,等. 论速生杨的生长习性[C]//辽宁省植物保护学会、辽宁省昆虫学会2011年学术交流研讨会,西安,2011:2. [21] ROSE C W, HOGARTH W L,GHADIRI H, et al. Overland flow to and through a segment of uniform resistance[J]. Journal of Hydrology, 2002, 255(1):134-150.DOI: 10.1016/S0022-1694(01)00523-6. [22] 何聪,刘璐嘉,王苏胜,等.不同结构草皮缓冲带对农田径流氮磷去除效果研究[J].江西农业学报, 2014, 26(8): 92-95. DOI:10.19386/j.cnki.jxnyxb.2014.08.024. HE C,LIU L J,WANG S S, et al. Study on efficiency of sward buffer strips with different structures on removal of nitrogen and phosphorus in farmland runoff[J]. Acta Agriculturae Jiangxi,2014, 26(8): 92-95. [23] SCHNABEL R R, SHAFFER J A, STOUT W L, et al. Denitrification distributions in four valley and ridge riparian ecosystems[J]. Environmental Management, 1997, 21(2):283-290. DOI: 10.1007/s002679900027. [24] 宋思铭. 河岸缓冲带净水效果及优化配置技术研究[D].北京:北京林业大学,2012. SONG S M. Research on water purification effect and optimizing allocation technology of riparian buffer strips [D]. Beijing: Beijing Forestry University,2012. [25] 吴敏, 吴立勋, 汤玉喜,等. 杨树生长的密度效应与数量成熟研究[J].湖南林业科技,2010,37(2):36-39. WU M, WU L X, TANG Y X, et al. Effects of density on growth of poplar and its quantitative maturity research [J]. Hunan Forestry Science & Technology, 2010, 37(2):36-39. [26] 孙东耀,仝川,纪钦阳,等.不同类型植被河岸缓冲带对模拟径流及总磷的消减研究[J].环境科学学报,2018,38(6):2393-2399. DOI:10.13671/j.hjkxxb.2017.0516. SUN D Y, TONG C, JI Q Y, et al. Reduction of simulated runoff and total phosphorus in different vegetation riparian buffer [J].Acta Scientiae Circumstantiae, 2018, 38(6):2393-2399. [27] 张鹏. 不同宽度竹林河岸缓冲带对氮磷的截留转化效率[D].北京:中国林业科学研究院,2010. ZHANG P. Interception and transformation efficiency of nitrogen-phosphorus on different width bamboo river buffer [D].Beijing: Chinese Academy of Forestry, 2010. [28] 赵警卫,胡彬.河岸带植被对非点源氮、磷以及悬浮颗粒物的截留效应[J].水土保持通报,2012,32(4):51-55. DOI:10.13961/j.cnki.stbctb.2012.04.001. ZHAO J W,HU B. Interception of non-point source N and P and suspended solid matter by riparian vegetation [J]. Bulletin of Soil and Water Conservation, 2012, 32(4):51-55. [29] SYVERSEN N. Effect and design of buffer zones in the Nordic climate:the influence of width, amount of surface runoff, seasonal variation and vegetation type on retention efficiency for nutrient and particle runoff [J].Ecological Engineering, 2005,24(5):483-490. DOI: 10.1016/j.ecoleng.2005.01.016. [30] 单艳红,杨林章,王建国.土壤磷素流失的途径、环境影响及对策[J].土壤,2004,36(6):602-608. DOI:10.13758/j.cnki.tr.2004.06.004. SHAN Y H, YANG L Z, WANG J G.Soil phosphorus loss to water: its pathways, environmental impact, and countermeasures [J]. Soils, 2004,36(6):602-608. [31] 阎丽凤, 石险峰, 于立忠,等. 沈阳地区河岸植被缓冲带对氮、磷的削减效果研究[J].中国生态农业学报,2011,19(2):403-408. DOI: 10.3724/SP.J.1011.2011.00403. YAN L F, SHI X F, YU L Z, et al. Elimination effects of riparian vegetation buffer zones on surface water nitrogen and phosphorus in Shenyang suburbs [J]. Chinese Journal of Eco-Agriculture,2011,19(2):403-408. [32] VYMAZAL J. Removal of nutrients in various types of constructed wetlands [J].Science of the Total Envriroment,2007, 380(1/3):48-65. DOI:10.1016/j.scitotenv.2006.09.014. [33] PRIOR H, JOHNES P J. Regulation of surface water quality in a cretaceous chalk catchment, UK: an assessment of the relative importance of instream and wetland processes [J]. Science of the Total Environment, 2002, 282(2):159-174. DOI: 10.1016/S0048-9697(01)00950-0. |
[1] | 杨永. 裸子植物的系统分类:历史、现状和展望[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 14-26. |
[2] | 张瑞, 周正虎, 王传宽, 金鹰. 东北温带森林不同材性树种木质部解剖和水力性状[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 229-236. |
[3] | 黄永健, 荀航, 张保, 尤俊昊, 姚曦, 汤锋. HPLC同时测定竹笋中8种酚酸类物质含量的方法研究及其应用[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 237-244. |
[4] | 邓云飞. 安息香科的系统学研究进展[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 27-35. |
[5] | 李家亮, 巫大宇, 毛康珊. 柏木属的分类地位和物种多样性研究现状与建议[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 36-45. |
[6] | 李涌福, 杨庆华, 陈林, 张敏, 向其柏, 王贤荣, 段一凡. 木犀属内分组关系的分类修订[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 58-62. |
[7] | 杨皓, 刘超, 庄家尧, 张树同, 张文韬, 毛国豪. 不同载体菌肥对紫穗槐生长和光合特性及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 81-89. |
[8] | 丁咏, 刘鑫, 张金池, 王宇浩, 陈美玲, 李涛, 刘孝武, 周悦湘, 孙连浩, 廖艺. 酸雨类型转变对杉木林地土壤和细根生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 90-98. |
[9] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[10] | 卜晓婷, 付威, 李淑娴, 徐志标, 彭大庆, 徐林桥. 幼化和外源激素对娜塔栎嫩枝扦插生根的影响及其生根解剖学观察[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 129-136. |
[11] | 杜晋城, 李欣欣, 王泽亮, 刘偲, 钟毅, 王丽华. 聚乙二醇胁迫下3个油橄榄品种生理指标响应[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 137-143. |
[12] | 方静, 张书曼, 严善春, 武帅, 赵佳齐, 孟昭军. 两种丛枝菌根真菌复合接种对青山杨叶片抗美国白蛾的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 144-154. |
[13] | 张馨方, 王广鹏, 张树航, 李颖, 郭燕. 不同抗螨性板栗差异次生代谢物筛选与分析[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 234-240. |
[14] | 杨宏, 伊贤贵, 王贤荣, 吴桐, 周华近, 陈洁, 李蒙, 朱兆青. 樱花新品种‘元春’[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 275-276. |
[15] | 田梦阳, 朱树林, 窦全琴, 季艳红. 薄壳山核桃-茶间作对‘安吉白茶’速生期光合特性的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 86-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||