南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (2): 43-50.doi: 10.3969/j.issn.1000-2006.201904005
朱显亮1,2(), 兰俊3, 王建忠3, 翁启杰1, 周长品1, 甘四明1, 李发根1,*()
收稿日期:
2019-04-02
修回日期:
2019-10-09
出版日期:
2020-03-30
发布日期:
2020-04-01
通讯作者:
李发根
基金资助:
ZHU Xianliang1,2(), LAN Jun3, WANG Jianzhong3, WENG Qijie1, ZHOU Changpin1, GAN Siming1, LI Fagen1,*()
Received:
2019-04-02
Revised:
2019-10-09
Online:
2020-03-30
Published:
2020-04-01
Contact:
LI Fagen
摘要:
【目的】研究桉树无性系的遗传变异,选育适用于中大径材培育的桉树优良无性系,作为后续良种选育的基础。【方法】以12年生尾细桉(Eucalyptus urophylla × E. tereticornis)杂种无性系试验林的154个无性系为研究材料,结合12年间调查的生长性状和8年生时测定的材性性状,进行方差分析、相关性分析及遗传参数估算等,最后采用主成分分析法进行多性状综合选择。【结果】不同无性系间的生长和材性性状差异均达显著水平,即通过选择可提升培育尾细桉成优质大径材的潜力。中大径材尾细桉无性系开展早期选择的时间在4.5~6.5 a最适,生长性状对基本密度的间接选择效果均为正向,以树高最佳。各性状的无性系重复力为56.28%~85.34%,单株重复力为24.35%~59.27%,无性系重复力均大于单株重复力,各性状受较高的遗传调控,遗传稳定性高。定选的10个优良无性系的生长性状遗传增益为14.64%~73.89%。【结论】所选12年生尾细桉杂种无性系满足桉树中径材培育要求,具有培育成大径材的潜力。
中图分类号:
朱显亮,兰俊,王建忠,等. 中大径材尾细桉杂种无性系选择研究[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 43-50.
ZHU Xianliang, LAN Jun, WANG Jianzhong, WENG Qijie, ZHOU Changpin, GAN Siming, LI Fagen. Clonal selection of middle/large diameter timber of Eucalyptus urophylla ×E. tereticornis hybrid clones[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(2): 43-50.DOI: 10.3969/j.issn.1000-2006.201904005.
表1
尾细桉各性状统计表"
项目 item | H/m | DDBH /cm | V/m3 | ρBD/ (g·cm-3) | wC/% | wH/% | wL/% | m(S)∶ m(G) | rL/W |
---|---|---|---|---|---|---|---|---|---|
平均值mean | 22.58 | 18.57 | 0.321 79 | 0.508 6 | 45.18 | 20.52 | 28.09 | 2.035 | 59.57 |
标准差SD | 4.14 | 5.33 | 0.201 33 | 0.036 8 | 1.86 | 1.68 | 0.95 | 0.367 | 5.50 |
最小值min. | 8.00 | 7.50 | 0.029 20 | 0.311 0 | 38.20 | 14.40 | 22.80 | 0.950 | 45.4 |
最大值max. | 28.60 | 31.70 | 0.898 30 | 0.577 0 | 50.70 | 27.10 | 30.60 | 2.960 | 83.0 |
表型变异系数/% phenotype coefficient of variation | 18.30 | 28.70 | 62.600 00 | 7.200 0 | 4.10 | 8.20 | 3.40 | 18.000 | 9.20 |
表2
尾细桉各性状方差分析表"
性状 traits | 无性系clone | 区组block | ||
---|---|---|---|---|
均方 mean square | F | 均方 mean square | F | |
H | 38.059 | 4.73** | 4.646 | 0.58 |
DDBH | 57.520 | 3.88** | 132.555 | 8.95** |
V | 0.084 | 4.04** | 0.113 | 5.46** |
ρBD | 0.002 | 2.82** | 0.002 | 2.89* |
wC | 6.314 | 3.33** | 12.379 | 6.53** |
wH | 4.486 | 2.23** | 5.656 | 2.82* |
wL | 1.494 | 2.53** | 1.736 | 2.94* |
m(S)∶m(G) | 0.314 | 5.83** | 0.200 | 3.71* |
rL/W | 46.373 | 2.06** | 30.780 | 1.37 |
表3
尾细桉生长性状与材性性状相关性表"
性状 traits | H | DDBH | V | ρBD | wC | wH | wL | m(S)∶ m(G) | rL/W |
---|---|---|---|---|---|---|---|---|---|
H | 0.909** | 0.880** | 0.634** | 0.312** | -0.451** | 0.296** | -0.183* | -0.147 | |
DDBH | 0.827** | 0.999** | 0.572** | 0.137 | -0.542** | 0.132 | -0.180* | 0.009 | |
V | 0.831** | 0.977** | 0.531** | 0.138 | -0.470** | 0.142 | -0.224** | -0.016 | |
ρBD | 0.516** | 0.398** | 0.392** | 0.392** | -0.654** | 0.093 | 0.071 | -0.309** | |
wC | 0.217** | 0.044 | 0.057 | 0.398** | -0.067 | 0.594** | -0.263** | -0.001 | |
wH | -0.334** | -0.324** | -0.311** | -0.463** | -0.157** | 0.372** | -0.324** | 0.285** | |
wL | 0.070 | -0.018 | -0.010 | 0.049 | 0.483** | 0.339** | -0.436** | 0.173* | |
m(S)∶m(G) | -0.149** | -0.253** | -0.259** | 0.025 | 0.176** | -0.386** | -0.222** | -0.173* | |
rL/W | -0.040 | -0.062 | -0.066 | 0.082 | -0.085 | 0.092 | -0.013 | -0.262** |
表4
细尾桉主要遗传参数"
变量 variation | 遗传变异系数 genetic coefficient of variation | 无性系重复力 clone repeatability | 单株重复力 individual repeatability |
---|---|---|---|
H | 13.33 | 82.01 | 53.26 |
DDBH | 19.26 | 77.81 | 46.71 |
V | 42.42 | 78.64 | 47.93 |
ρBD | 4.24 | 69.12 | 35.88 |
wC | 2.57 | 74.04 | 41.62 |
wH | 4.23 | 60.07 | 27.33 |
wL | 1.86 | 64.92 | 31.63 |
m(S)∶m(G) | 13.76 | 85.34 | 59.27 |
rL/W | 4.52 | 56.28 | 24.35 |
表5
主成分分析"
因子 factor | 主成分 principal components | |||
---|---|---|---|---|
第1 PRIN1 | 第2 PRIN2 | 第3 PRIN3 | 第4 PRIN4 | |
H | 0.914 | 0.097 | -0.002 | -0.062 |
DDBH | 0.920 | 0.179 | -0.213 | -0.155 |
V | 0.919 | 0.189 | -0.202 | -0.163 |
ρBD | 0.661 | -0.222 | 0.294 | 0.407 |
wC | 0.270 | -0.153 | 0.865 | 0.067 |
wH | -0.508 | 0.700 | 0.099 | -0.205 |
wL | 0.027 | 0.475 | 0.777 | -0.147 |
m(S)∶m(G) | -0.145 | -0.852 | 0.148 | -0.085 |
rL/W | -0.057 | 0.349 | -0.110 | 0.877 |
特征根latent root | 3.319 | 1.714 | 1.568 | 1.064 |
贡献率/%contribution rate | 36.882 | 19.044 | 17.419 | 11.819 |
累计贡献率/% accumulative contribution rate | 36.882 | 55.927 | 73.346 | 85.165 |
表6
各主成分得分排名前15"
排名 rank | 第1主成分PRIN1 | 第2主成分PRIN2 | ||
---|---|---|---|---|
无性系号 clone ID | y1 | 无性系号 clone ID | y2 | |
1 | 497 | 5.394 0 | 536 | 3.684 0 |
2 | 680 | 5.202 3 | 269 | 3.385 2 |
3 | 298 | 4.973 9 | 765 | 3.010 4 |
4 | 1037 | 4.615 6 | 589 | 2.732 8 |
5 | 484 | 4.349 7 | 673 | 2.686 9 |
6 | 963 | 4.130 5 | 511 | 1.995 1 |
7 | 300 | 4.085 1 | 797 | 1.988 1 |
8 | 956 | 3.895 3 | 913 | 1.922 9 |
9 | 244 | 3.712 1 | 268 | 1.903 3 |
10 | 506 | 3.606 7 | 967 | 1.890 0 |
11 | 1004 | 3.544 3 | 428 | 1.778 6 |
12 | 890 | 3.528 7 | 783 | 1.707 0 |
13 | 1022 | 3.520 0 | 436 | 1.692 7 |
14 | 931 | 3.428 8 | 927 | 1.687 1 |
15 | 861 | 3.353 1 | 899 | 1.642 |
表7
尾细桉无性系选择与遗传增益"
排名 rank | 无性系号 clone ID | H/m | DDBH /cm | V/m3 | ρBD/ (g·cm-3) | wC/% | wH/% | wL/% | m(S)∶ m(G) | rL/W |
---|---|---|---|---|---|---|---|---|---|---|
1 | 497 | 27.5 | 27.6 | 0.719 7 | 0.529 | 45.3 | 19.2 | 28.3 | 1.48 | 59.4 |
2 | 680 | 26.6 | 26.5 | 0.644 6 | 0.541 | 46.0 | 18.2 | 28.3 | 1.66 | 59.5 |
3 | 298 | 27.5 | 25.5 | 0.623 7 | 0.533 | 45.6 | 17.3 | 26.6 | 2.35 | 55.7 |
4 | 1 037 | 26.6 | 26.5 | 0.641 9 | 0.513 | 46.4 | 18.1 | 28.4 | 2.29 | 54.6 |
5 | 484 | 27.0 | 27.7 | 0.704 0 | 0.506 | 45.8 | 20.6 | 28.4 | 1.79 | 60.5 |
6 | 963 | 26.7 | 24.3 | 0.551 0 | 0.551 | 45.2 | 18.9 | 28.4 | 2.18 | 56.3 |
7 | 300 | 26.1 | 25.2 | 0.585 5 | 0.539 | 45.7 | 19.0 | 28.2 | 2.22 | 59.8 |
8 | 956 | 25.3 | 26.9 | 0.653 1 | 0.534 | 43.3 | 20.1 | 27.5 | 2.01 | 55.4 |
9 | 244 | 26.6 | 25.1 | 0.599 0 | 0.523 | 44.5 | 19.8 | 28.0 | 1.72 | 62.1 |
10 | 506 | 26.2 | 23.5 | 0.519 1 | 0.532 | 45.8 | 18.1 | 27.4 | 2.39 | 55.6 |
入选平均值selected mean | 26.61 | 25.88 | 0.6241 6 | 0.530 | 45.36 | 18.93 | 27.93 | 2.010 | 57.89 | |
遗传增益genetic gain | 14.64 | 30.39 | 73.89 | 2.92 | 0.30 | -4.64 | -0.34 | -1.05 | -1.61 | |
占总均值百分比percent of the population mean | 117.85 | 139.06 | 193.97 | 104.23 | 100.41 | 92.27 | 99.47 | 98.77 | 97.15 |
[1] | 张磊, 李丽芳, 王建忠, 等. 桉树大径材优良无性系的初步选育研究[J]. 桉树科技, 2019,36(2):21-26. |
ZHANG L, LI L F, WANG J Z, et al. Research on breeding of large-diameter Eucalyptus timber [J]. Eucalypt Science & Technology, 2019,36(2):21-26. DOI: 10.13987/j.cnki.askj.2019.02.004. | |
[2] | 何沙娥, 欧阳林男, 朱林生, 等. 桉树大径材培育技术研究概述[J]. 桉树科技, 2018,35(1):37-43. |
HE S E, OUYANG L N, ZHU L S, et al. A review of silviculture for solid-wood production from Eucalyptus plantations [J]. Eucalypt Science & Technology, 2018,35(1):37-43. DOI: 10.13987/j.cnki.askj.2018.01.008. | |
[3] | 李宝琦, 徐建民, 李光友, 等. 桉树大径材无性系中期选择[J]. 安徽农业科学, 2009,37(34):17170-17174. |
LI B Q, XU J M, LI G Y, et al. Research on the medium-term selection of the clone of Eucalyptus timber with large-diameter [J]. Journal of Anhui Agricultural Sciences, 2009,37(34):17170-17174. DOI: 10.3969/j.issn.0517-6611.2009.34.176. | |
[4] | 李晓琼, 刘亚珍, 梁水清, 等. 桉树杂交种对桉树枝瘿姬小蜂的抗性变异分析[J]. 生态学报, 2017,37(18):6157-6166. |
LI X Q, LIU Y Z, LIANG S Q, et al. Analysis of variable resistance in Eucalyptus hybrids to Leptocybe invasa [J]. Acta Ecologica Sinica, 2017,37(18):6157-6166. DOI: 10.5846/stxb201606191192. | |
[5] | 陈健波, 李昌荣, 项东云, 等. 尾叶桉×巨桉等桉树杂交家系杂种优势测试[J]. 南方农业学报, 2017,48(10):1858-1862. |
CHEN J B, LI C R, XIANG D Y, et al. Heterosis test for Eucalyptus hybrid families including Eucalyptus urophylla × Eucalyptus grandis [J]. Journal of Southern Agriculture, 2017,48(10):1858-1862. DOI: 10.3969/j.issn.2095-1191.2017.10.20. | |
[6] | 祁述雄. 中国桉树[M]. 2版. 北京: 中国林业出版社, 2002. |
[7] | 解懿妮, 莫晓勇, 彭仕尧, 等. 粤西21个桉树无性系早期性状遗传变异分析和无性系综合选择[J]. 南京林业大学学报(自然科学版), 2018,42(3):73-80. |
XIE Y N, MO X Y, PENG S Y, et al. Genetic variation analysis and early comprehensive selection of 21 Eucalyptus clones in western of Guangdong Province, China [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018,42(3):73-80. DOI: 10.3969/j.issn.1000-2006.2017010. | |
[8] | 陈升侃, 周长品, 翁启杰, 等. 尾叶桉×细叶桉木材密度与生长的联合选择[J]. 林业科学研究, 2018,31(2):77-82. |
CHEN S K, ZHOU C P, WENG Q J, et al. Combined selection of wood density and growth in Eucalyptus urophylla × E. tereticornis hybrids [J]. Forest Research, 2018,31(2):77-82. DOI: 10.13275/j.cnki.lykxyj.2018.02.011. | |
[9] |
YANG H Y, WENG Q J, LI F G, et al. Genotypic variation and genotype-by-environment interactions in growth and wood properties in a cloned Eucalyptus urophylla × E. tereticornis family in southern China[J]. Forest Science, 2018, 64(3), 225-232. DOI: 10.1093/forsci/fxx011.
doi: 10.1093/forsci/fxx011 |
[10] | 项东云, 王明庥, 黄敏仁, 等. 大花序桉木材抗弯弹性模量变异研究[J]. 华南农业大学学报, 2012,33(1):73-76. |
XIANG D Y, WANG M X, HUANG M R, et al. Variations of modulus of elasticity in Eucalyptus cloeziana wood [J]. Journal of South China Agricultural University, 2012,33(1):73-76. DOI: 10.7671/j.issn.1001-411X.2012.01.015. | |
[11] | 李昌荣, 陈健波, 郭东强, 等. 锯材大花序桉生长和材性的综合指数选择[J]. 南京林业大学学报(自然科学版), 2019,43(1):1-8. |
LI C R, CHEN J B, GUO D Q, et al. Comprehensive index selection on superior growth and wood properties of Eucalyptus cloeziana for saw timber [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2019,43(1):1-8. DOI: 10.3969/j.issn.1000-2006.201805018. | |
[12] | 张双燕, 费本华, 余雁, 等. 木质素含量对木材单根纤维拉伸性能的影响[J]. 北京林业大学学报, 2012,34(1):131-134. |
ZHANG S Y, FEI B H, YU Y. et al. Influence of lignin content on tensile properties of single wood fiber[J]. Journal of Beijing Forestry University, 2012,34(1):131-134. DOI: 10.13332/j.1000-1522.2012.01.008. | |
[13] | 王传贵, 江泽慧, 费本华, 等. 化学成分对木材细胞壁纵向弹性模量和硬度的影响[J]. 北京林业大学学报, 2012,34(3):107-110. |
WANG C G, JIANG Z H, FEI B H, et al. Effects of chemical components on longitudinal MOE and hardness of wood cell wall[J]. Journal of Beijing Forestry University, 2012,34(3):107-110. DOI: 10.13332/j.1000-1522.2012.03.004. | |
[14] |
OZPARPUCU M, RUGGEBERG M, GIERLINGER N, et al. Unravelling the impact of lignin on cell wall mechanics: a comprehensive study on young poplar trees downregulated for cinnamyl alcohol dehydrogenase (CAD)[J]. Plant Journal, 2017, 91(3):480-490. DOI: 10.1111/tpj.13584.
doi: 10.1111/tpj.13584 |
[15] | 国增超. 簸箕柳材性性状表型变异的研究[D]. 南京: 南京林业大学, 2014. |
GUO Z C. Phenotypic variation of wood properties in Salix suchowensis [D]. Nanjing: Nanjing Forestry University, 2014. | |
[16] | 康建诚. 马尾松实生种子园子代材性变异分析及优良家系选择[D]. 南京: 南京林业大学, 2012. |
KANG J C. Wood properties variation analysis and superior families selection of Masson pine seedling seed orchard[D]. Nanjing: Nanjing Forestry University, 2012. | |
[17] | 甘四明, 李梅, 李发根, 等. 尾叶桉×细叶桉杂种无性系扦插生根和生长性状的研究[J]. 林业科学研究, 2006,19(2):135-140. |
GAN S M, LI M, LI F G, et al. Analysis on cutting and growth traits of clones of Eucalyptus urophylla × E. tereticornis [J]. Forest Research, 2006,19(2):135-140. DOI: 10.3321/j.issn:1001-1498.2006.02.002. | |
[18] | 岑巨延. 广西桉树人工林二元立木材积动态模型研究[J]. 华南农业大学学报, 2007,28(1):91-95. |
CEN J Y. Study on two-way tree volume dynamic model of Eucalyptus plantations in Guangxi [J]. Journal of South China Agricultural University, 2007,28(1):91-95. DOI: 10.3969/j.issn.1001-411X.2007.01.022. | |
[19] |
LI C, WENG Q, CHEN J, et al. Genetic parameters for growth and wood mechanical properties in Eucalyptus cloeziana F. Muell.[J]. New Forests, 2017, 48(1):33-49. DOI: 10.1007/s11056-016-9554-4.
doi: 10.1007/s11056-016-9554-4 |
[20] | 续九如. 林木数量遗传学[M]. 北京: 高等教育出版社, 2006. |
[21] |
HEIN P R G, BOUVET J, MANDROU E, et al. Age trends of microfibril angle inheritance and their genetic and environmental correlations with growth, density and chemical properties in Eucalyptus urophylla S.T. Blake wood[J]. Annals of Forest Science, 2012, 69(6):681-691. DOI: 10.1007/s13595-012-0186-3.
doi: 10.1007/s13595-012-0186-3 |
[22] | 吴世军, 徐建民, 李光友, 等. 滇中南巨桉种源/家系年度变异分析[J]. 中国农学通报, 2018,34(23):60-64. |
WU S J, XU J M, LI G Y, et al. Genetic variation and selection for provenances and families of Eucalyptus grandis among ages [J]. Chinese Agricultural Science Bulletin, 2018,34(23):60-64. | |
[23] |
APIOLAZA L A, RAYMOND C A, YEO B J. Genetic variation of physical and chemical wood properties of Eucalyptus globulus[J]. Silvae Genetica, 2005, 54(1/6):160-166. DOI: 10.1515/sg-2005-0024.
doi: 10.1515/sg-2005-0024 |
[24] | 李昌荣, 项东云, 陈健波, 等. 18年生尾巨桉无性系木材纤维形态和基本密度变异研究[J]. 广西林业科学, 2011,40(4):262-265. |
LI C R, XIANG D Y, CHEN J B, et al. Study of variation on the wood fiber formation and basic density of 18-year-old Eucalyptus urophlla × Eucalyptus grandis clone [J]. Guangxi Forestry Science, 2011,40(4):262-265. DOI: 10.19692/j.cnki.gfs.2011.04.005. | |
[25] | 李光友, 徐建民, 王伟, 等. 杂交桉家系在冷凉区优势评价与遗传分析[J]. 南京林业大学学报(自然科学版), 2017,41(4):55-63. |
LI G Y, XU J M, WANG W, et al. Study on heterosis estimation and genetic analysis of Eucalyptus hybrids in cold area [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017,41(4):55-63. DOI: 10.3969/j.issn.1000-2006.201605069. | |
[26] | 熊涛, 王建忠, 谢献锋, 等. 圆角桉第2代家系遗传变异与中期选择[J]. 广西林业科学, 2018,47(2):175-179. |
XIONG T, WANG J Z, XIE X F, et al. Genetic variation and mid-term selection of second generation Eucalyptus tereticornis [J]. Guangxi Forestry Science, 2018,47(2):175-179. DOI: 10.19692/j.cnki.gfs.2018.02.011. | |
[27] | 吴世军. 尾叶桉及其杂种无性系遗传变异与选择研究[D]. 北京: 中国林业科学研究院, 2012. |
WU S J. Genotypic variation and selection in Eucalyptus urophylla and hybrid clones with E. urophylla [D]. Beijing: Chinese Academy of Forestry, 2012. | |
[28] | 谷振军, 张党权, 黄青云. 木质素合成关键酶基因与造纸植物转基因改良应用研究[J]. 中南林业科技大学学报, 2010,30(3):67-74. |
GU Z J, ZHANG D Q, HUANG Q Y. Transgenic modification on pulp plants by key genes regulating lignin biosynjournal[J]. Journal of Central South University of Forestry & Technology, 2010,30(3):67-74. DOI: 10.3969/j.issn.1673-923X.2010.03.011. | |
[29] |
STEWART J J, AKIYAMA T, CHAPPLE C, et al. The effects on lignin structure of over expression of ferulate 5-hydroxylase in hybrid poplar[J]. Plant Physiology, 2009, 150(2):621-635. DOI: 10.1104/pp.109.137059.
doi: 10.1104/pp.109.137059 |
[30] |
RENAN GARCIR J, ANDERSON N, LE-FEUVRE R, et al. Rescue of syringyl lignin and sinapate ester biosynjournal inArabidopsis thaliana by a coniferaldehyde 5-hydroxylase from Eucalyptus globulus[J]. Plant Cell Reports, 2014, 33(8):1263-1274. DOI: 10.1007/s00299-014-1614-7.
doi: 10.1007/s00299-014-1614-7 |
[31] | STACKPOLE D J, VAILLANCOURT R E, ALVES A, et al. Genetic variation in the chemical components of Eucalyptus globulus wood[J]. Genes|Genomes|Genetics, 2011, 1(2):151-159. DOI: 10.1534/g3.111.000372. |
[32] | DENIS M, FAVREAU B, UENO S, et al. Genetic variation of wood chemical traits and association with underlying genes in Eucalyptus urophylla[J]. Tree Genetics & Genomes, 2013, 9(4):927-942. DOI: 10.1007/s11295-013-0606-z. |
[33] |
MAKOUANZI G, CHAIX G, NOURISSIER S, et al. Genetic variability of growth and wood chemical properties in a clonal population of Eucalyptus urophylla × Eucalyptus grandis in the Congo[J]. Southern Forests: a Journal of Forest Science, 2017, 80(2):151-158. DOI: 10.2989/20702620.2017.1298015.
doi: 10.2989/20702620.2017.1298015 |
[34] |
HATFIELD R, FUKUSHIMA R S. Can lignin be accurately measured?[J]. Crop Science, 2005, 45(3):832-839. DOI: 10.2135/cropsci2004.0238.
doi: 10.2135/cropsci2004.0238 |
[35] | 卢万鸿, 楚彪, 林彦, 等. 桉树材性性状近红外预测模型的建立[J]. 桉树科技, 2015,32(2):10-16. |
LU W H, CHU B, LIN Y, et al. NIRS calibration for predicting wood properties of Eucalyptus [J]. Eucalypt Science & Technology, 2015,32(2):10-16. DOI: 10.13987/j.cnki.askj.2015.02.002. |
[1] | 赵金满, 韩馨悦, 程瑞明, 张志东. 塞罕坝自然保护区华北落叶松和樟子松人工林健康评价[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 199-206. |
[2] | 赵志强, 许晓龙, 袁青, 吴妍. 哈尔滨段松花江湿地景观格局演变及驱动因素分析[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 219-226. |
[3] | 程文强, 徐阳, 吴开云, 赵献民, 龚榜初. 3种综合评价方法在柿果品质评价中的应用[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 61-72. |
[4] | 徐慧, 姚霞珍, 佟珂珂, 邢震, 李垚. 3种牡丹花器官不同部位挥发性成分分析[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 63-69. |
[5] | 陈含, 王东升, 白冰, 李佳凤, 陈可心, 程蓓蓓. 21份木槿栽培品种表型多样性评价[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 117-126. |
[6] | 胡兴峰, 吴帆, 孙晓波, 陈厚平, 殷安政, 季孔庶. 38年生马尾松种源生长及材性联合分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 203-212. |
[7] | 张恒, 崔孟然, 单延龙, 王飞. 中蒙边境典型草原草本可燃物燃烧性研究[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 171-177. |
[8] | 朱显亮, 周长品, 贾翠蓉, 翁启杰, 李发根. 尾细桉生长和木材密度关联SNP挖掘与候选基因定位[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 143-150. |
[9] | 吴红, 燕丽萍, 李成忠, 夏群, 周霞, 赵宝元. 槭树属常见树种翅果性状多样性与风传播特征分析[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 103-110. |
[10] | 冯园园, 李清莹, 黄均华, 胡绍庆. 25个彩叶桂无性系(品种)的数量分类研究[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 107-115. |
[11] | 王爱斌, 宋慧芳, 张流洋, 张明, 杨诗雯, 张凌云. 生物肥和菌肥对蓝莓苗生长及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 63-70. |
[12] | 王云鹏, 张蕊, 周志春, 华斌, 黄少华, 马丽珍, 范辉华. 10年生木荷生长和材性性状家系变异及选择[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 85-92. |
[13] | 张怡文, 郭傲东, 吴海龙, 袁宏武, 董云春. 基于PCA-BP神经网络的PM2.5季节性预测方法研究[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 231-238. |
[14] | 乐志, 应天慧, 马群. 园林历史研究中的量化及分析算法研究——以南京明、清杏花村地块为例[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 25-33. |
[15] | 张晓艳, 季新月, 王雷, 张绮纹, NERVO Giuseppe, 李金花. 不同地点黑杨派无性系生长性状变异及其与叶片性状相关分析[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 65-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||