南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (2): 59-66.doi: 10.3969/j.issn.1000-2006.201904027
张恒(), 刘晓婷, 陈嵩, 周雪燕, 司冬晶, 李莹, 赵曦阳*()
收稿日期:
2019-04-13
修回日期:
2019-12-04
出版日期:
2020-03-30
发布日期:
2020-04-01
通讯作者:
赵曦阳
基金资助:
ZHANG Heng(), LIU Xiaoting, CHEN Song, ZHOU Xueyan, SI Dongjing, LI Ying, ZHAO Xiyang*()
Received:
2019-04-13
Revised:
2019-12-04
Online:
2020-03-30
Published:
2020-04-01
Contact:
ZHAO Xiyang
摘要:
【目的】探究三倍体小黑杨生长迅速原因。通过蛋白质差异表达分析,深入研究三倍体小黑杨生长发育机理,为其优质高产育种提供参考。【方法】以三倍体小黑杨杂种无性系为材料,分别用75 mmol/L NaCl溶液胁迫处理0、4、8、12和16 d,利用蛋白质双向电泳和MALDI-TOF/TOF质谱技术,探讨其不同处理条件下叶片差异表达蛋白。【结果】共检测到4 000多个蛋白点,包含96个差异蛋白点,其中盐胁迫4、8、12、16 d与对照相比,分别鉴定出5、21、36、34个差异蛋白点,对60个蛋白点进行质谱鉴定,这些蛋白按功能可分为8类:其中光合作用占25%、能量代谢占20%、氧化还原作用占12%、抗性蛋白占8%、生物合成和代谢占7%、运输蛋白占3%、信号转导占2%和未知蛋白占23%。【结论】三倍体小黑杨杂种无性系受到盐胁迫后,多种蛋白质共同参与应答,其中主要是光合作用和能量代谢相关蛋白,本研究可以为盐胁迫下林木蛋白质组学研究提供基础。
中图分类号:
张恒,刘晓婷,陈嵩,等. 盐胁迫下三倍体小黑杨杂种无性系叶片蛋白质差异表达分析[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 59-66.
ZHANG Heng, LIU Xiaoting, CHEN Song, ZHOU Xueyan, SI Dongjing, LI Ying, ZHAO Xiyang. Analysis of differentially expressed proteins in leaves of triploid Populus simonii × P. nigra hybrid clones under salt stress[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(2): 59-66.DOI: 10.3969/j.issn.1000-2006.201904027.
表1
盐胁迫下差异蛋白表达的分析结果"
代谢途径 metabolisim | 蛋白点 spot number | 登录号 accession No | 蛋白质名称 protein name | 物种名称 plant species | 理论等电点/ 分子量/ku theoretical pI/Mrc | 观测等电点/ 分子量/ku observed pI/ Mrc | ||||
---|---|---|---|---|---|---|---|---|---|---|
能量代谢 energy metabolism | 173 | TPIC_SPIOL | 磷酸丙糖异构酶(TIM)triosephosphate isomerase | 菠菜Spinacia oleracea | 6.45/34.79 | 5.16/24.30 | ||||
181 | ALFC1_PEA | 果糖二磷酸醛缩酶(FBP aldolase1)fructose-bisphosphate aldolase 1 | 豌豆Pisum sativum | 5.83/38.75 | 5.17/35.06 | |||||
189 | RPE_ORYSJ | 核酮糖磷酸-3-差向异构酶ribulose-phosphate-3-epimerase | 粳稻Oryza sativa subsp. japonica | 8.65/29.24 | 6.23/36.67 | |||||
196 | MDHP_ARATH | 苹果酸脱氢酶(NADP-MDH)malate dehydrogenase | 拟南芥Arabidopsis thaliana | 8.66/42.61 | 6.15/38.50 | |||||
208 | TPIC_SPIOL | 磷酸丙糖异构酶(TIM)triosephosphate isomerase | 菠菜Spinacia oleracea | 6.45/34.79 | 5.45/37.95 | |||||
279 | PGP1B_ARATH | 磷酸甘油磷酸酯酶(phosphatase 1B)phosphoglycolate phosphatase 1B | 拟南芥Arabidopsis thaliana | 6.89/40.19 | 5.10/35.56 | |||||
367 | gi|743808090 | 预测:木糖异构酶PREDICTED:xylose isomerase | 胡杨P. euphratica | 5.45/53.63 | 5.70/54.15 | |||||
402 | gi|566149765 | 3-异丙基苹果酸脱氢酶(NADP-MDH) 3-isopropylmalate dehydrogenase 2 family protein | 毛果杨P. trichocarpa | 5.6/43.82 | 5.05/39.59 | |||||
419 | GAPN_APIGR | 3-磷酸甘油醛脱氢酶(GAPDH) NADP-dependent glyceraldehyde-3-phosphate dehydrogenase | 白芹Apium graveolens | 7.49/53.88 | 6.56/53.12 | |||||
452 | ENO_ORYSJ | 烯醇酶enolase | 粳稻Oryza sativa subsp. japonica | 5.41/48.28 | 5.87/46.85 | |||||
363 | gi|743788904 | 预测:羧酸酯酶8predicted: probable carboxylesterase 8 | 胡杨P. euphratica | 5.77/36.25 | 5.15/43.58 | |||||
555 | gi|1169528 | 烯醇酶2enolase 2 | ENO2 | 5.7/48.41 | 6.32/70.28 | |||||
光合作用 photosynthesis | 72 | CX5B1_ARATH | 线粒体细胞色素C氧化酶亚基5b-1(C5b-1) cytochrome c oxidase subunit 5b-1,mitochondrial | 拟南芥Arabidopsis thaliana | 4.91/19.57 | 4.90/14.30 | ||||
88 | UCRIA_PEA | 细胞色素B6/F铁硫亚基(B6/f) cytochrome b6-f complex iron-sulfur subunit | 豌豆Pisum sativum | 8.63/24.68 | 5.12/15 | |||||
394 | KPPR_ARATH | 磷酸核酮糖激酶(PRK)phosphoribulokinase | 拟南芥Arabidopsis thaliana | 5.71/44.72 | 5.4/52.23 | |||||
111 | PREDICTED: ATP synthase subunit d,mitochondrial-like | 预测:ATP合酶d亚基(ATP synthase) predicted: ATP synthase subunit d, mitochondrial-like | 胡杨P. euphratica | 5.31/19.71 | 5.24/14.58 | |||||
147 | gi|224062595 | 光系统Ⅱ放氧复合体2(OEE2) photosystem Ⅱ oxygen-evolving complex protein 2 precursor | 杂交杨P. trichocarpa Quinone oxidoreductase-like protein | 7.68/28.34 | 5.78/30.5 | |||||
518 | gi|743804898 | 预测:转酮醇酶(TK)predicted: transketolase | 胡杨P. euphratica | 6.00/81.23 | 5.58/69.85 | |||||
529 | TKTC_SOLTU | 转酮醇酶(TK)transketolase | 马铃薯Solanum tuberosum | 5.94/80.34 | 5.90/58.40 | |||||
552 | TKTC_SOLTU | 转酮醇酶(TK)transketolase | 马铃薯Solanum tuberosum | 5.94/80.34 | 6.05/66.22 | |||||
332 | gi|119905 | 铁氧还蛋白-NADP还原酶(Fe-S) ferredoxin-NADP reductase,leaf isozyme | 豌豆Pisum sativum | 8.56/40.453 | 6.55/38.2 | |||||
387 | KPPR_MESCR | 磷酸核酮糖激酶(PRK)phosphoribulokinase | 冰叶日中花 Mesembryanthemum crystallinum | 6.03/44.49 | 5.36/37.2 | |||||
75 | gi|118430834 | 线粒体甘氨酸脱羧酶复合物H蛋白 mitochondrial glycine decarboxylase complex H-protein | 美洲山杨P. tremuloides | 4.98/17.89 | 4.96/14.4 | |||||
96 | gi|134142794 | 线粒体甘氨酸脱羧酶复合物H蛋白 mitochondrial glycine decarboxylase complex H-protein | 美洲山杨P. tremuloides | 4.78/17.72 | 4.37/15.64 | |||||
413 | GCSP1_ARATH | 甘氨酸脱氢酶(脱羧)1Glycine dehydrogenase (decarboxylating) 1 | 拟南芥Arabidopsis thaliana | 6.51/113.82 | 5.86/40.34 | |||||
532 | gi|705245152 | ATP酶亚基1ATPase subunit 1 (mitochondrion) | 毛果杨P. trichocarpa | 6.11/55.47 | 6.60/68.34 | |||||
566 | RUBA_RICCO | 磷酸核酮糖缩化酶大亚基蛋白亚基(RuBisCO)RuBisCO large subunit-binding protein subunit alpha (Fragment) | 蓖麻Ricinus communi | 4.77/52.46 | 4.90/62.13 | |||||
氧化还原 作用 REDOX reaction | 60 | gi|586004 | 超氧化物歧化酶(SOD)superoxide dismutase [Cu-Zn] | 番薯Ipomoea batatas | 5.64/15.19 | 5.88/19.5 | ||||
78 | SODCP_PINSY | 超氧化物歧化酶(SOD)superoxide dismutase [Cu-Zn] | 欧洲赤松Pinus sylvestris | 5.16/14.54 | 5.43/14.5 | |||||
85 | SODCP_PINSY | 超氧化物歧化酶(SOD)superoxide dismutase [Cu-Zn] | 欧洲赤松Pinus sylvestris | 5.16/14.54 | 5.80/13.23 | |||||
233 | gi|283135904 | DHAR类谷胱甘肽转移酶(GST) DHAR class glutathione transferase DHAR1 | 毛果杨P. trichocarpa | 4.93/24.52 | 5.00/28.45 | |||||
329 | gi|224078584 | 乙二醛酶(CAT) glyoxalase I homolog family protein | 毛果杨P. trichocarpa | 5.21/33.19 | 5.28/35 | |||||
481 | gi|743909002 | 预测:乳酰谷胱甘肽裂解酶 PREDICTED: putative lactoylglutathione lyase | 胡杨P. euphratica | 4.87/32.93 | 6.24/61.23 | |||||
354 | GSA_SOYBN | 谷氨酸-1-半醛2,1-氨基变位酶 glutamate-1-semialdehyde 2,1-aminomutase | 大豆Glycine max | 5.67/49.84 | 5.78/37.5 | |||||
信号转导 signal transduction | 136 | TL29_SOLLC | 类囊体蛋白29 ku thylakoid lumenal 29 ku protein | 大番茄Solanum lycopersicum | 8.27/37.90 | 5.25/32.42 | ||||
运输蛋白 transport protein | 58 | gi|224088120 | MD-2相关脂类识别蛋白(ML蛋白质) MD-2-related lipid recognition domain-containing family protein | 毛果杨P. trichocarpa | 5.87/16.94 | 6.14/11.64 | ||||
119 | gi|209967467 | 低温载脂蛋白temperature-induced lipocalin | 胡杨P. euphratica | 5.73/21.59 | 6.08/19.88 | |||||
代谢途径 metabolisim | 蛋白点 spot number | 登录号 accession No | 蛋白质名称 protein name | 物种名称 plant species | 理论等电点/ 分子量/ku theoretical pI/Mrc | 观测等电点/ 分子量/ku observed pI/ Mrc | ||||
生物合成 和代谢 biosynthesis and metabolism | 471 | gi|223635300 | S-腺苷甲硫氨酸合成酶3(AdoMet) S-adenosylmethionine synthase 3 | 毛果杨P. trichocarpa | 5.5/43.60 | 5.82/60.51 | ||||
449 | gi|743938030 | 预测:线粒体加工肽酶亚基β predicted: probable mitochondrial-processing peptidase subunit beta | 胡杨P. euphratica | 6.14/58.67 | 5.70/42.89 | |||||
67 | gi|743895771 | 预测:蛋白质3级结构域的部分蛋白 predicted: psbP domain-containing protein 3 | 胡杨P. euphratica | 5.24/19.98 | 4.90/14.65 | |||||
54 | MSRB5_ORYSJ | 肽-甲硫氨酸亚砜还原酶B5 peptide methionine sulfoxide reductase B5 | 粳稻Oryza sativa subsp. japonica | 6.81/51.72 | 7.21/50.89 | |||||
抗性蛋白 resistant protein | 458 | gi|743887120 | 预测:肌动蛋白Predicted: actin-7-like | 胡杨P. euphratica | 5.24/41.89 | 5.37/55.41 | ||||
443 | ACT7_ARATH | 肌动蛋白-7 Actin-7 | 拟南芥Arabidopsis thaliana | 5.31/41.94 | 5.40/43.58 | |||||
521 | gi|566190494 | H+-双阀门三磷腺苷转运酶 H+-transporting two-sector ATPase family protein | 毛果杨P. trichocarpa | 5.96/59.89 | 5.65/69.85 | |||||
524 | gi|566191212 | 紫色酸性磷酸酶purple acid phosphatase family protein | 毛果杨P. trichocarpa | 5.78/72.80 | 5.75/69.85 | |||||
527 | gi|743896116 | 预测:果桃α-L-阿拉伯呋喃糖苷酶抗体 PREDICTED: alpha-L-arabinofuranosidase 1-like | 胡杨P. euphratica | 5.12/74.37 | 5.82.67.85 | |||||
未知蛋白 unknown protein | 13 | gi|224108822 | 假设蛋白hypothetical protein POPTR_0010s16080g | 毛果杨P. trichocarpa | 5.86/12.02 | 6.30/10.0 | ||||
57 | UT107_PEA | unknown protein from spot 107 of 2D-PAGE of thylakoid (Fragment) | 豌豆Pisum sativum | 9.63/1.58 | 5.46/11.33 | |||||
62 | gi|566191227 | 假设蛋白hypothetical protein POPTR_0010s16860g | 毛果杨P. trichocarpa | 5.91/14.69 | 5.27/31.65 | |||||
74 | gi|566258110 | 假设蛋白hypothetical protein POPTR_0128s00210g | 毛果杨P. trichocarpa | 8.76/21.99 | 6.07/26.94 | |||||
125 | gi|118489173 | unknown | 杂交杨P. trichocarpa × P. deltoides | 5.72/21.54 | 6.02/30.23 | |||||
199 | gi|224125628 | 假设蛋白hypothetical protein POPTR_0013s03700g | 毛果杨P. trichocarpa | 5.28/28.34 | 4.87/26.60 | |||||
236 | gi|224081262 | 假设蛋白hypothetical protein POPTR_0005s08750g | 毛果杨P. trichocarpa | 7.71/28.02 | 5.68/26.4 | |||||
240 | gi|743815063 | PREDICTED: uncharacterized protein At5g02240 | 胡杨P. euphratica | 8.41/33.98 | 5.38/26.36 | |||||
244 | gi|224093896 | 假设蛋白hypothetical protein POPTR_0007s06770g | 毛果杨P. trichocarpa | 8.5/27.83 | 6.33/27.00 | |||||
337 | gi|118487575 | unknown | 毛果杨P. trichocarpa | 7.55/43.08 | 6.08/39.05 | |||||
342 | gi|566210244 | 假设蛋白hypothetical protein POPTR_0016s14310g | 毛果杨P. trichocarpa | 8.68/40.80 | 6.25/35.80 | |||||
345 | gi|118489355 | unknown | 杂交杨P. trichocarpa × P. deltoides | 8.17/43.09 | 6.50/40.12 | |||||
372 | gi|566184261 | 假设蛋白hypothetical protein POPTR_0008s16150g | 毛果杨P. trichocarpa | 6.67/34.42 | 5.89/38.90 | |||||
374 | gi|118481558 | unknown | 毛果杨P. trichocarpa | 5.78/34.27 | 6.05/37.50 |
[1] |
ZHENG T C, ZANG L N, DAI L J, et al. Two novel eukaryotic translation initiation factor 5A genes from Populus simonii × P. nigra confer tolerance to abiotic stresses in Saccharomyces cerevisiae[J]. Journal of Forestry Research, 2017, 28(3):453-463. DOI: 10.1007/s11676-016-0266-6.
doi: 10.1007/s11676-016-0266-6 |
[2] | 孙琦, 曲春浦, 郑美珠, 等. 小黑杨FLC基因的克隆及功能解析[J]. 植物研究, 2015,35(3):363-369,377. |
SUN Q, QU C P, ZHENG M Z, et al. Isolation and functional analysis ofFLC gene from poplar (Populus simonii × P. nigra) [J]. Bulletin of Botanical Research, 2015,35(3):363-369,377. DOI: 10.7525/j.issn.1673-5102.2015.03.007. | |
[3] | 刘殿昆, 刘梦然, 李志新, 等. 转TaLEA基因小黑杨无性系生长性状变异研究[J]. 植物研究, 2015,35(4):540-546. |
LIU D K, LIU M R, LI Z X, et al. Variation analysis of growth traits of transgenic Populus simonii×P. nigra clones carrying TaLEA gene [J]. Bulletin of Botanical Research, 2015,35(4):540-546. DOI: 10.7525/j.issn.1673-5102.2015.04.011. | |
[4] | 金微微, 张会慧, 李鑫, 等. 小黑杨和桑树叶片光合特性对不同氮素形态的响应[J]. 中南林业科技大学学报, 2018,38(5):98-103. |
JIN W W, ZHANG H H, LI X, et al. Responses of photosynthetic characteristics in leaves of Populus simonii×P. nigra and Morus alba to nitrogen forms [J]. Journal of Central South University of Forestry & Technology, 2018,38(5):98-103. DOI: 10.14067/j.cnki.1673-923x.2018.05.016. | |
[5] |
YAO W J, WANG S J, ZHOU B R, et al. Characterization of ERF76 promoter cloned from Populus simonii × P. nigra[J]. Acta Physiologiae Plantarum, 2017, 39(11):249. DOI: 10.1007/s11738-017-2539-x.
doi: 10.1007/s11738-017-2539-x |
[6] |
WANG S J, WANG J Y, YAO W J, et al. Expression patterns of WRKY genes in di-haploid Populus simonii × P. nigra in response to salinity stress revealed by quantitative real-time PCR and RNA sequencing[J]. Plant Cell Reports, 2014, 33(10):1687-1696. DOI: 10.1007/s00299-014-1647-y.
doi: 10.1007/s00299-014-1647-y |
[7] | 张力杰, 张凯旋, 魏志刚. 小黑杨PnsGA20ox1基因的克隆及功能分析[J]. 南京林业大学学报(自然科学版), 2013,37(6):11-16. |
ZHANG L J, ZHANG K X, WEI Z G. Cloning and function analysis of PnsGA20ox1 gene in Populus simonii × P. nigra [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2013,37(6):11-16. DOI: 10.3969/j.issn.1000-2006.2013.06.003. | |
[8] | 费希同, 唐军荣, 周军, 等. 中国杨树多倍体诱导研究现状[J]. 湖北农业科学, 2014,53(18):4252-4256. |
FEI X T, TANG J R, ZHOU J, et al. Research status of polyploid induction on poplar in China[J]. Hubei Agricultural Sciences, 2014,53(18):4252-4256. DOI: 10.14088/j.cnki.issn0439-8114.2014.18.046. | |
[9] | 赵奉彬, 尚策, 张莉梅, 等. 11种杨属植物的倍性鉴定及山杨天然三倍体的发现[J]. 东北林业大学学报, 2016,44(6):23-27. |
ZHAO F B, SHANG C, ZHANG L M, et al. Ploidy testing of 11 poplar species and discovery of natural triploid Populus davidiana Dode [J]. Journal of Northeast Forestry University, 2016,44(6):23-27. DOI: 10.13759/j.cnki.dlxb.20160510.015. | |
[10] | 周余华, 梁有旺, 彭方仁. 低温胁迫下克恩氏冬青幼苗叶片差异蛋白质分析[J]. 南京林业大学学报(自然科学版), 2017,41(6):187-192. |
ZHOU Y H, LIANG Y W, PENG F R. Proteomic analysis of Ilex seedling leaf response to low temperature [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017,41(6):187-192. DOI: 10.3969/j.issn.1000-2006.201703027. | |
[11] | 严冬, 刘殿昆, 司冬晶, 等. 适用于双向电泳的杨树叶片蛋白质提取方法的研究[J]. 植物研究, 2016,36(3):469-475. |
YAN D, LIU D K, SI D J, et al. Optional protein extracting methods of poplar leaves for two-dimensional gel electrophoresis[J]. Bulletin of Botanical Research, 2016,36(3):469-475. DOI: 10.7525/j.issn.1673-5102.2016.03.022. | |
[12] | 王康君, 樊继伟, 陈凤, 等. 植物对盐胁迫的响应及耐盐调控的研究进展[J]. 江西农业学报, 2018,30(12):31-40. |
WANG K J, FAN J W, CHEN F, et al. Research advances in response of plants to salt stress and regulation of salinity tolerance[J]. Acta Agriculturae Jiangxi, 2018,30(12):31-40. DOI: 10.19386/j.cnki.jxnyxb.2018.12.07. | |
[13] | 朱倩. 利用蓝色温和电泳分析盐胁迫下水稻根尖质膜蛋白质组[D]. 南京: 南京农业大学, 2009. |
ZHU Q. Proteomic research of rice root tip plasma membrane under salt stress with BN/SDS-page[D]. Nanjing: Nanjing Agricultural University, 2009. | |
[14] | 曹凡, 彭方仁, 梁有旺, 等. 美国山核桃不定根形成过程中相关蛋白质的鉴定及功能分析[J]. 南京林业大学学报(自然科学版), 2016,40(2):53-58. |
CAO F, PENG F R, LIANG Y W, et al. Identification and function prediction of proteins during the adventitious rooting of pecan hardwood cuttings[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016,40(2):53-58. DOI: 10.3969/j.issn.1000-2006.2016.02.009. | |
[15] | 安飞飞, 李庚虎, 陈霆, 等. 低温胁迫对木薯叶片叶绿素荧光参数及PSⅡ相关蛋白表达水平的影响[J]. 湖南农业大学学报(自然科学版), 2014,40(2):148-152. |
AN F F, LI G H, CHEN T, et al. Influence of low temperature stress on chlorophyll fluorescence parameters and expression levels of proteins in PSⅡof cassava[J]. Journal of Hunan Agricultural University (Natural Sciences), 2014,40(2):148-152. DOI: 10.13331/j.cnki.jhau.2014.02.008. | |
[16] | 邓林, 陈少良. ATPase与植物抗盐性[J]. 植物学通报, 2005,40(S1):11-21. |
DENG L, CHEN S L. ATPase and salt resistance in plants[J]. Chinese Bulletin of Botany, 2005,40(S1):11-21. | |
[17] | 闫绍鹏, 訾晓雪, 王秋玉. 不同木质底物诱导下桦剥管菌细胞内差异蛋白质分析[J]. 南京林业大学学报(自然科学版), 2019,43(1):181-185. |
YAN S P, ZI X X, WANG Q Y. Intracellular proteome analysis of Piptoporus betulinus induced by different wood substrates [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019,43(1):181-185. DOI: 10.3969/j.issn.1000-2006.201702019. | |
[18] | 庄明浩, 陈双林, 李迎春, 等. CO2浓度升高对毛竹器官矿质离子吸收、运输和分配的影响[J]. 生态学报, 2013,33(14):4297-4305. |
ZHUANG M H, CHEN S L, LI Y C, et al. Effects of increased concentrations of gas CO2 on mineral ion uptake, transportation and distribution in Phyllostachys edulis [J]. Acta Ecologica Sinica, 2013,33(14):4297-4305. DOI: 10.5846/stxb201204130524. | |
[19] | 代婷婷, 姚新转, 吕立堂, 等. 烟草NAC4基因的克隆及其抗旱功能分析[J]. 农业生物技术学报, 2018,26(5):764-773. |
DAI T T, YAO X Z, LV L T, et al. Cloning and drought-resistant function analysis of NAC4 gene in tobacco (Nicotiana tabacum) [J]. Journal of Agricultural Biotechnology, 2018,26(5):764-773. DOI: 10.3969/j.issn.1674-7968.2018.05.004. | |
[20] |
NEGI N P, SHRIVASTAVA D C, SHARMA V, et al. Overexpression of CuZnSOD from Arachis hypogaea alleviates salinity and drought stress in tobacco[J]. Plant Cell Reports, 2015, 34(7):1109-1126. DOI: 10.1007/s00299-015-1770-4.
doi: 10.1007/s00299-015-1770-4 |
[21] | 相昆, 徐颖, 李国田, 等. 外源NO对低温胁迫下核桃幼苗活性氧代谢的影响[J]. 林业科学, 2016,52(1):143-149. |
XIANG K, XU Y, LI G T, et al. Effects of exogenous nitric oxide on reactive oxygen metabolism of walnut seedlings under low temperature stress[J]. Scientia Silvae Sinicae, 2016,52(1):143-149. DOI: 10.11707/j.1001-7488.20160117. | |
[22] |
ARAI M, MIYASHITA M, KOBORI A, et al. Carbonyl stress and schizophrenia[J]. Psychiatry and Clinical Neurosciences, 2014, 68(9):655-665. DOI: 10.1111/pcn.12216.
doi: 10.1111/pcn.2014.68.issue-9 |
[23] |
XUE G P, WAY H M, RICHARDSON T, et al. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat[J]. Molecular Plant, 2011, 4(4):697-712. DOI: 10.1093/mp/ssr013.
doi: 10.1093/mp/ssr013 |
[24] | 宋浩, 丁伟, 沙伟, 等. 不同烟草青枯病抗性品种的蛋白质组学比较[J]. 中国烟草科学, 2011,32(5):70-76. |
SONG H, DING W, SHA W, et al. Comparative analysis of proteomics in Tobacco cultivars with different Ralstonia solanacearm resistance [J]. Chinese Tobacco Science, 2011,32(5):70-76. DOI: 10.3969/j.issn.1007-5119.2011.05.016. | |
[25] | 倪飞, 励文豪, 蔡苗苗, 等. 光皮桦转录组及S-腺苷甲硫氨酸合成酶基因分析[J]. 农业生物技术学报, 2018,26(3):410-420. |
NI F, LI W H, CAI M M, et al. Analysis of transcriptome and the S-adenosylmethionine synthetase (SAMS) genes in Betula luminifera [J]. Journal of Agricultural Biotechnology, 2018,26(3):410-420. DOI: 10.3969/j.issn.1674-7968.2018.03.006. | |
[26] | 赵晋锋, 余爱丽, 朱晶莹, 等. 玉米S-腺苷甲硫氨酸合成酶基因(SAMS)逆境胁迫下的表达分析[J]. 河北农业大学学报, 2010,33(5):13-17. |
ZHAO J F, YU A L, ZHU J Y, et al. Expressional analysis of SAMS gene from Zea mays under abiotic stresses [J]. Journal of Agricultural University of Hebei, 2010,33(5):13-17. DOI: 10.3969/j.issn.1000-1573.2010.05.003. | |
[27] |
BRINKER M, BROSCHÉ M, VINOCUR B, et al. Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation[J]. Plant Physiology, 2010, 154(4):1697-1709. DOI: 10.1104/pp.110.164152.
doi: 10.1104/pp.110.164152 |
[28] | 雷震, 裴玉贺, 赵美爱, 等. 盐胁迫下玉米叶片差异蛋白的双向电泳分析[J]. 玉米科学, 2013,21(3):82-86. |
LEI Z, PEI Y H, ZHAO M A, et al. Analysis of soluble maize leaf proteins under salinity stress by two-dimensional electrophoresis[J]. Journal of Maize Sciences, 2013,21(3):82-86. DOI: 10.13597/j.cnki.maize.science.2013.03.018. | |
[29] | 张美华, 崔月, 张少斌. 豌豆肌动蛋白异型体PEAc3在不同干旱条件下的表达分析[J]. 北方园艺, 2017(8):107-110. |
ZHANG M H, CUI Y, ZHANG S B. Expression analysis of pea actin isoform(PEAc3) under different drought conditions[J]. Northern Horticulture, 2017(8):107-110. DOI: 10.11937/bfyy.201708024. | |
[30] |
JANGPROMMA N, KITTHAISONG S, LOMTHAISONG K, et al. A proteomics analysis of drought stress-responsive proteins as biomarker for drought-tolerant sugarcane cultivars[J]. American Journal of Biochemistry and Biotechnology, 2010, 6(2):89-102. DOI: 10.3844/ajbbsp.2010.89.102.
doi: 10.3844/ajbbsp.2010.89.102 |
[1] | 芦治国, 华建峰, 殷云龙, 施钦. 盐胁迫下氮素形态对海滨木槿幼苗生长及生理特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 91-98. |
[2] | 张强, 周鹏, 刘昌来, 余永帆, 张敏, 杨甲定. NaCl处理下全缘冬青和红果冬青根系的转录组活性比较[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 99-108. |
[3] | 马仕林, 曹鹏翔, 张金池, 刘京, 王金平, 朱凌骏, 袁钟鸣. 盐胁迫下AMF对榉树幼苗生长和光合特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 122-130. |
[4] | 佘建炜, 张康, 郑旭, 赵小军, 程方, 唐罗忠. 海水处理对沼泽小叶桦苗木生长和生理的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 102-108. |
[5] | 黎梦娟, 朱礼明, 霍俊男, 张景波, 施季森, 成铁龙. 唐古特白刺NtCBL1、NtCBL2基因克隆及表达分析[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 93-99. |
[6] | 崔令军, 刘瑜霞, 林健, 石开明. 丛枝菌根真菌对盐胁迫下桢楠光合生理的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 101-106. |
[7] | 叶查龙, 颜斌, 申婷婷, 宁坤, 李慧玉. 转BpmiR156基因白桦株系的耐盐性分析[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 147-151. |
[8] | 鲁强, 杨玲, 王昊伟, 袁佳秋, 洑香香, 方彦. 秀丽四照花光合特性和叶绿体超微结构的盐胁迫响应[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 29-36. |
[9] | 崔令军, 刘瑜霞, 林健, 石开明. 盐胁迫下丛枝菌根真菌对桢楠根系生长和激素的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 119-124. |
[10] | 王昊伟, 杨玲, 鲁强, 洑香香. 盐胁迫对大花四照花种子萌发与幼苗生长的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 89-94. |
[11] | 廖杨文科, 崔荣荣, 谢寅峰. 氰丙氨酸合酶在乙烯诱导杨树耐盐中的作用[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 137-142. |
[12] | 周余华,梁有旺,彭方仁. 低温胁迫下克恩氏冬青幼苗叶片差异蛋白质分析[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 187-192. |
[13] | 莫正海,何海洋,陈文静,邓秋菊,彭方仁. 薄壳山核桃嫁接愈合过程中差异蛋白质的分析[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 19-25. |
[14] | 周琦,祝遵凌,施曼. 盐胁迫对鹅耳枥生长及生理生化特性的影响[J]. 南京林业大学学报(自然科学版), 2015, 39(06): 56-60. |
[15] | 张子晗,王家源,喻方圆. 盐胁迫对两种源苦楝种子萌发特性的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(05): 107-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||