[1] |
OLIET J A, PLANELLES R, ARTERO F, et al. Field performance of Pinus halepensis planted in Mediterranean arid conditions: relative influence of seedling morphology and mineral nutrition[J]. New Forests, 2009, 37(3):313-331. DOI: 10.1007/s11056-008-9126-3.
doi: 10.1007/s11056-008-9126-3
|
[2] |
OLIET J A, TEJADA M, SALIFU K F, et al. Performance and nutrient dynamics of holm oak (Quercus ilex L.) seedlings in relation to nursery nutrient loading and post-transplant fertility[J]. European Journal of Forest Research, 2009, 128(3):253-263. DOI: 10.1007/s10342-009-0261-y.
doi: 10.1007/s10342-009-0261-y
|
[3] |
TIMMER V R. Exponential nutrient loading: a new fertilization technique to improve seedling performance on competitive sites[J]. New Forests, 1997, 13(1/2/3):279-299. DOI: 10.1023/A:1006502830067.
doi: 10.1023/A:1006502830067
|
[4] |
HAWKINS J, BURGESS D, MITCHELL K. Growth and nutrient dynamics of western hemlock with conventional or exponential greenhouse fertilization and planting in different fertility conditions[J]. Canadian Journal of Forest Research, 2005, 35(4):1002-1016. DOI: 10.1139/x05-026.
doi: 10.1139/x05-026
|
[5] |
MALIK V, TIMMER V R. Biomass partitioning and nitrogen retranslocation in black spruce seedlings on competitive mixedwood sites: a bioassay study[J]. Canadian Journal of Forest Research, 1998, 28(2):206-215. DOI: 10.1139/cjfr-28-2-206.
doi: 10.1139/x97-207
|
[6] |
SALIFU K F, JACOBS D F, BIRGE Z K D. Nursery nitrogen loading improves field performance of bareroot oak seedlings planted on abandoned mine lands[J]. Restoration Ecology, 2009, 17(3):339-349. DOI: 10.1111/j.1526-100x.2008.00373.x.
doi: 10.1111/rec.2009.17.issue-3
|
[7] |
SALIFU K F, TIMMER V R. Nutrient retranslocation response of seedlings to nitrogen supply[J]. Soil Science Society of America Journal, 2001, 65(3):905. DOI: 10.2136/sssaj2001.653905x.
doi: 10.2136/sssaj2001.653905x
|
[8] |
ISLAM M A, APOSTOL K G, JACOBS D F, et al. Fall fertilization of Pinus resinosa seedlings: nutrient uptake, cold hardiness,and morphological development[J]. Annals of Forest Science, 2009, 66(7):704. DOI: 10.1051/forest/2009061.
doi: 10.1051/forest/2009061
|
[9] |
林平, 邹尚庆, 李国雷, 等. 油松容器苗生长和氮吸收对指数施肥的响应[J]. 南京林业大学学报(自然科学版), 2013,37(3):23-28.
|
|
LIN P, ZOU S Q, LI G L, et al. Response of growth and N uptake of Pinus tabulaeformis container seedlings to exponential fertilization [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013,37(3):23-28.DOI: 10.3969/j.issn.1000-2006.2013.03.005.
|
[10] |
TIMMER V R, MUNSON A D. Site-specific growth and nutrition of planted Picea mariana in the Ontario Clay Belt. IV. Nitrogen loading response[J]. Canadian Journal of Forest Research, 1991, 21(7):1058-1065. DOI: 10.1139/x91-145.
doi: 10.1139/x91-145
|
[11] |
郝龙飞, 王庆成, 张彦东, 等. 指数施肥对山桃稠李播种苗生物量及养分动态的影响[J]. 林业科学, 2012,48(6):33-39.
|
|
HAO L F, WANG Q C, ZHANG Y D, et al. Effect of exponential fertilization on biomass and nutrient dynamics ofPadus maackii seedlings [J]. Scientia Silvae Sinicae, 2012,48(6):33-39.
|
[12] |
李国雷, 祝燕, 蒋乐, 等. 指数施肥对栓皮栎容器苗生长和氮积累的影响[J]. 东北林业大学学报, 2012,40(11):6-9.
|
|
LI G L, ZHU Y, JIANG L, et al. Effect of exponential fertilization on growth and nitrogen storage of containerized quercus variabilis seedlings [J]. Journal of Northeast Forestry University, 2012,40(11):6-9. DOI: 10.3969/j.issn.1000-5382.2012.11.002.
|
[13] |
王益明, 万福绪, 胡菲, 等. 指数施肥对美国山核桃幼苗根系形态的影响[J]. 东北林业大学学报, 2018,46(3):29-32.
|
|
WANG Y M, WAN F X, HU F, et al. Effects of exponential fertilization on root morphology of pecan seedlings[J]. Journal of Northeast Forestry University, 2018,46(3):29-32. DOI: 10.13759/j.cnki.dlxb.2018.03.006.
|
[14] |
唐桂兰, 刘小星, 芦建国. 氮素指数施肥对夏蜡梅幼苗生长、养分分配的影响[J]. 南京林业大学学报(自然科学版), 2017,41(6):134-140.
|
|
TANG G L, LIU X X, LU J G. Effects of nitrogen exponential fertilization on growth and nutrient distribution ofSinocalycanthus chinensis seedlings [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017,41(6):134-140. DOI: 10.3969/j.issn.1000-2006.201604043.
|
[15] |
CHEN L, WANG C S, DELL B, et al. Growth and nutrient dynamics of Betula alnoides seedlings under exponential fertilization[J]. Journal of Forestry Research, 2018, 29(1):111-119. DOI: 10.1007/s11676-017-0427-2.
doi: 10.1007/s11676-017-0427-2
|
[16] |
LYNCH J. Root architecture and plant productivity[J]. Plant Physiology, 1995, 109(1):7-13. DOI: 10.1104/pp.109.1.7.
doi: 10.1104/pp.109.1.7
|
[17] |
杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系[J]. 中国农业科学, 2011,44(1):36-46.
|
|
YANG J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization[J]. Scientia Agricultura Sinica, 2011,44(1):36-46. DOI: 10.3864/j.issn.0578-1752.2011.01.005.
|
[18] |
EISSENSTAT D M, WELLS C E, YANAI R D, et al. Building roots in a changing environment: implications for root longevity[J]. New Phytologist, 2000, 147(1):33-42. DOI: 10.1046/j.1469-8137.2000.00686.x.
doi: 10.1046/j.1469-8137.2000.00686.x
|
[19] |
CHAPIN F S, MATSON P A, MOONEK P M. Principles of terrestrial ecosystem ecology[M]. New York: Springer, 2011. DOI: 10.1007/978-1-4419-9504-9.
|
[20] |
王文娜, 王燕, 王韶仲, 等. 氮有效性增加对细根解剖、形态特征和菌根侵染的影响[J]. 应用生态学报, 2016,27(4):1294-1302.
|
|
WANG W N, WANG Y, WANG S Z, et al. Effects of elevated N availability on anatomy, morphology and mycorrhizal colonization of fine roots: a review[J]. Chinese Journal of Applied Ecology, 2016,27(4):1294-1302. DOI: 10.13287/j.1001-9332.201604.032.
|
[21] |
王九龄, 杨建平. 紫椴种子休眠原因的初步研究[J]. 林业科学, 1981,17(3):317-324.
|
|
WANG J L, YANG J P. Preliminary study on seed dormancy of Tilia amurensis [J]. Scientia Silvae Sinicae, 1981,17(3):317-324.
|
[22] |
王海南, 沈海龙, 杨立学. 紫椴嫩枝扦插繁殖技术研究[J]. 经济林研究, 2012,30(3):106-110.
|
|
WANG H N, SHEN H L, YANG L X. Techniques of softwood cuttings propagation in Tilia amurensis [J]. Nonwood Forest Research, 2012,30(3):106-110. DOI: 10.14067/j.cnki.1003-8981.2012.03.027.
|
[23] |
张羽, 陈祥伟, 杨立学, 等. 化控物质对紫椴棚式育苗生长和抗寒性的效应[J]. 东北林业大学学报, 2001,29(2):21-26.
|
|
ZHANG Y, CHEN X W, YANG L X, et al. The seedling growth and cold-resistance of Tilia amurensis treated by chemical control substances [J]. Journal of Northeast Forestry University, 2001,29(2):21-26. DOI: 10.3969/j.issn.1000-5382.2001.02.006.
|
[24] |
IMO M, TIMMER V R. Nitrogen uptake of mesquite seedlings at conventional and exponential fertilization schedules[J]. Soil Science Society of America Journal, 1992, 56(3):927. DOI: 10.2136/sssaj1992.03615995005600030041x.
doi: 10.2136/sssaj1992.03615995005600030041x
|
[25] |
张彦东, 范志强. 不同形态N素对水曲柳幼苗生长的影响[J]. 应用生态学报, 2000,11(5): 665-667.
|
|
ZHANG Y D, FAN Z Q. Effect of different nitrogen forms on growth of Fraxinus mandshurica seedlings[J]. Chinese Journal of Applied Ecology, 2000,11(5): 665-667. DOI: http://ir.xtbg.org.cn/handle/353005/2438.
|
[26] |
BURGESS D. Western hemlock and Douglas-fir seedling development with exponential rates of nutrient addition[J]. Forest Science, 1991, 37(37):54-67.
|
[27] |
TIMMER V R, MILLER B D. Effects of contrasting fertilization and moisture regimes on biomass, nutrients, and water relations of container grown red pine seedlings[J]. New Forests, 1991, 5(4):335-348. DOI: 10.1007/bf00118861.
doi: 10.1007/BF00118861
|
[28] |
TIMMER V R, ARMSTRONG G. Growth and nutrition of containerized Pinus resinosa at exponentially increasing nutrient additions[J]. Canadian Journal of Forest Research, 1987, 17(7):644-647. DOI: 10.1139/x87-105.
doi: 10.1139/x87-105
|
[29] |
XU X, TIMMER V R. Biomass and nutrient dynamics of Chinese fir seedlings under conventional and exponential fertilization regimes[J]. Plant & Soil, 1998, 203(2):313-322.
|
[30] |
QU L Y, QUORESHI A M, KOIKE T. Root growth characteristics, biomass and nutrient dynamics of seedlings of two larch species raised under different fertilization regimes[J]. Plant and Soil, 2003, 255(1):293-302. DOI: 10.1023/a:1026159709246.
doi: 10.1023/A:1026159709246
|
[31] |
HODGE A. The plastic plant: root responses to heterogeneous supplies of nutrients[J]. New Phytologist, 2004, 162(1):9-24. DOI: 10.1111/j.1469-8137.2004.01015.x.
doi: 10.1111/nph.2004.162.issue-1
|