南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (2): 117-124.doi: 10.3969/j.issn.1000-2006.201812012
周泽宇1(), 杨绕华2, 张玉珍1, 黄选瑞1, 张志东1, 王冬至1,*(), 李大勇2
收稿日期:
2018-12-06
修回日期:
2019-02-27
出版日期:
2020-03-30
发布日期:
2020-04-01
通讯作者:
王冬至
基金资助:
ZHOU Zeyu1(), YANG Raohua2, ZHANG Yuzhen1, HUANG Xuanrui1, ZHANG Zhidong1, WANG Dongzhi1,*(), LI Dayong2
Received:
2018-12-06
Revised:
2019-02-27
Online:
2020-03-30
Published:
2020-04-01
Contact:
WANG Dongzhi
摘要:
【目的】基于不同直径分布预测模型(Weibull分布模型、Gamma分布模型、Lognormal分布模型),构建包含华北落叶松林分因子的直径分布线性混合效应模型,有助于分析直径分布对林分因子动态变化的响应。【方法】利用塞罕坝华北落叶松人工林标准地调查数据,应用最大似然估计法(Maximum Likelihood Estimation, MLE)估计模型参数,通过K-S(Kolmogorov-Smirnov)检验、C-V(Cramer-von Mises)检验、A-D(Anderson-Darling)检验对模型适用性进行检验,基于最优模型构建华北落叶松人工林直径分布线性混合效应模型。【结果】塞罕坝华北落叶松人工林直径分布最优模型为Weibull分布;基于最优模型,构建了包含优势高、断面积、对数密度的线性混合效应模型,当3个参数随机效应方差-协方差结构和误差项结构均为对角矩阵结构[UN(1)]时,模型的拟合效果最好。包含位置、尺度、形状3参数随机效应项模型的决定系数R2分别为0.895、0.888、0.801,均方误差(MSE)分别为5.365、1.724、1.151,均方根误差(RMSE)分别为2.316、1.313、1.073,拟合结果均较好。【结论】线性混合效应模型具有较好的预测直径分布能力,可为精准预测华北落叶松人工林直径分布提供理论依据和技术参数。
中图分类号:
周泽宇,杨绕华,张玉珍,等. 华北落叶松人工林直径分布预测模型构建[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 117-124.
ZHOU Zeyu, YANG Raohua, ZHANG Yuzhen, HUANG Xuanrui, ZHANG Zhidong, WANG Dongzhi, LI Dayong. Prediction model construction of diameter distribution of Larix principis-rupprechtii plantation[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(2): 117-124.DOI: 10.3969/j.issn.1000-2006.201812012.
表1
华北落叶松样地基本统计量"
数据类型 data type | 变量 variable | 平均胸径/ cm DBH | 林分平均 高/m height | 林分密度/ (株· hm-2) stand density | 年龄/a age | 林分断面积/ (m2·hm-2) stand basal area | 优势高/m dominant height | 海拔/m elevation | 坡度/ (°) slope |
---|---|---|---|---|---|---|---|---|---|
建模数据 modeling data | 最小值min. | 6.70 | 5.0 | 267 | 10 | 6.42 | 6.4 | 953 | 1 |
最大值max. | 31.30 | 21.9 | 3 014 | 53 | 41.98 | 23.5 | 1 429 | 37 | |
均值mean | 19.39 | 14.9 | 769 | 35 | 20.58 | 16.2 | 1 184 | 17 | |
标准差SD | 4.29 | 3.1 | 499 | 7 | 9.28 | 3.1 | 258 | 8 | |
检验数据 validation data | 最小值min. | 7.80 | 5.0 | 258 | 11 | 8.79 | 6.4 | 930 | 2 |
最大值max. | 31.30 | 20.7 | 2 980 | 45 | 35.23 | 21.9 | 1 423 | 40 | |
均值mean | 21.44 | 15.9 | 772 | 36 | 20.49 | 17.1 | 1 162 | 18 | |
标准差SD | 4.10 | 2.9 | 501 | 7 | 5.51 | 2.9 | 260 | 8 |
表4
主成分分析特征向量值"
变量 variable | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Dg | 0.487 2 | -0.172 1 | 0.267 9 | -0.197 5 | -0.495 4 | 0.613 9 |
Dd | 0.459 1 | -0.175 9 | 0.262 4 | 0.786 6 | 0.257 3 | -0.067 5 |
Hd | 0.483 0 | 0.054 2 | 0.036 7 | -0.511 5 | 0.707 3 | 0.022 0 |
A | 0.423 8 | 0.120 6 | -0.873 9 | 0.123 6 | -0.163 5 | -0.013 3 |
G | 0.344 5 | 0.572 7 | 0.305 9 | -0.107 6 | -0.355 1 | -0.567 5 |
log s | -0.142 6 | 0.770 7 | 0.026 5 | 0.232 0 | 0.187 9 | 0.543 9 |
表6
混合模型不同随机效应参数组合"
参数类别 parameter category | 随机效应 random-effect | AIC | BIC | -2Log- Like | LRT | P |
---|---|---|---|---|---|---|
位置参数 location parameter | 截距 intercept | 566.9 | 583.8 | 554.9 | 0.05 | 0.950 |
Hd、log s | 544.2 | 566.7 | 528.2 | 7.86 | 0.005 | |
Hd | 593.7 | 585.2 | 572.7 | 2.62 | 0.450 | |
log s | 583.7 | 591.6 | 582.7 | 1.58 | 0.640 | |
尺度参数 scale- parameter | 截距 intercept | 429.9 | 446.8 | 417.9 | 0.01 | 0.998 |
Hd、log s | 443.6 | 426.8 | 414.8 | 3.17 | 0.075 | |
Hd | 529.8 | 545.6 | 517.8 | 1.05 | 0.560 | |
log s | 527.8 | 541.1 | 517.8 | 1.21 | 0.510 | |
形状参数 shape parameter | 截距 intercept | 431.3 | 451.0 | 417.3 | 0.02 | 0.920 |
Hd、log s | 425.6 | 436.8 | 417.6 | 4.73 | 0.193 | |
Hd | 429.8 | 445.6 | 417.8 | 3.54 | 0.420 | |
log s | 427.8 | 441.1 | 417.8 | 3.62 | 0.380 |
表7
线性混合模型参数估计"
参数 parameter | 位置参数 location parameter | 尺度参数 scale parameter | 形状参数 shape parameter | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
估计值 estimation | 标准差 SD | t | P | 估计值 estimation | 标准差 SD | t | P | 估计值 estimation | 标准差 SD | t | P | ||
截距interept | -4.723 | 1.554 | -3.04 | 0.081 | -10.456 | 1.822 | -5.73 | 0.010 | 1.733 | 2.390 | 3.23 | 0.012 | |
Hd | 1.029 | 0.081 | 12.77 | <0.001 | 0.812 | 0.051 | 15.86 | <0.001 | 0.023 | 0.057 | 9.74 | <0.001 | |
G | 0.072 | 0.028 | 2.53 | 0.020 | 0.002 | 0.016 | 6.96 | 0.052 | 0.026 | 0.021 | 4.28 | 0.032 | |
log s | -0.089 | 0.162 | -3.66 | 0.041 | 0.734 | 0.239 | -3.06 | 0.081 | 0.048 | 0.329 | -2.61 | 0.018 | |
| 0.032 | 0.069 | 3.26 | 0.007 | 0.001 | 0.524 | 6.28 | 0.025 | 0.001 | 0.007 | 2.00 | 0.023 | |
| 0.150 | 0.393 | 4.08 | 0.049 | 0.031 | 0.338 | 3.87 | 0.047 | 0.058 | 0.284 | 5.23 | 0.008 | |
eij | 0.017 28 | 0.020 | 2.98 | 0.090 | 0.287 | 0.614 | 1.52 | 0.073 | 1.799 | 1.569 | 3.51 | 0.101 | |
R2 | 0.895 | 0.888 | 0.801 | ||||||||||
σMSE | 5.365 | 1.724 | 1.151 | ||||||||||
σRMSE | 2.316 | 1.313 | 1.073 |
[1] | 孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2006. |
MENG X Y. Tree survey [M], Beijing: Chinese Forestry Publishing House, 2006. | |
[2] | 马炜, 孙玉军. 三种直径分布拟合模型在长白落叶松林分的实际应用[J]. 生物数学学报, 2012,27(3):548-554. |
MA W, SUN Y J. Modeling of stand diameter structure of Larix olgensis plantations [J]. J Biomath, 2012,27(3):548-554. | |
[3] |
XU Y. Approximation of the median of the Gamma distribution[J]. Journal of Number Theory, 2017, 174:487-493. DOI: 10.1016/j.jnt.2016.11.019.
doi: 10.1016/j.jnt.2016.11.019 |
[4] |
PILISZEK A, WESOŁOWSKI J. Change of measure technique in characterizations of the Gamma and Kummer distributions[J]. J Math Anal Appl, 2018, 458(2):967-979.DOI: 10.1016/j.jmaa.2017.10.011.
doi: 10.1016/j.jmaa.2017.10.011 |
[5] |
ABBASI B, RABELO L, HOSSEINKOUCHACK M. Estimating parameters of the three-parameter Weibull distribution using a neural network[J]. Eur J Ind Eng, 2008, 2(4):428.DOI: 10.1504/ejie.2008.018438.
doi: 10.1504/EJIE.2008.018438 |
[6] | POUDEL K P, CAO Q V. Evaluation of methods to predict weibull parameters for characterizing diameter distributions[J]. For Sci, 2013, 59(2):243-252.DOI: 10.5849/forsci.12-001. |
[7] | CAO Q. Predicting parameters of a Weibull function for modeling diameter distribution[J]. Forest Science, 2004, 50(5):682-685.DOI: 10.1093/forestscience/50.5.682. |
[8] | 方精云, 菅诚. 利用Weibull分布函数预测林木的直径分布[J]. 北京林业大学学报, 1987(3):261-269. |
FANG J Y, JIAN C. Estimating diameter distribution with the Weibull distribution function[J]. J Beijing For Univ, 1987(3):261-269. DOI: 10.13332/j.1000-1522.1987.03.008. | |
[9] | 国红, 雷渊才. 蒙古栎林分直径Weibull分布参数估计和预测方法比较[J]. 林业科学, 2016,52(10):64-71. |
GUO H, LEI Y C. Method comparison of weibull function for estimating and predicting diameter distribution of Quercus mongolica stands [J]. Sci Silvae Sin, 2016,52(10):64-71.DOI: 10.11707/j.1001-7488.20161008. | |
[10] | 陈新美, 张会儒, 武纪成, 等. 柞树林直径分布模拟研究[J]. 林业资源管理, 2008(1):39-43. |
CHEN X M, ZHANG H R, WU J C, et al. Study on diameter distribution simulation of Quereus mongolica stands [J]. For Resour Manag, 2008(1):39-43.DOI: 10.3969/j.issn.1002-6622.2008.01.010. | |
[11] | 符利勇, 刘应安, 张海东. 庞泉沟自然保护区主要树种直径正态分布拟合研究[J]. 林业资源管理, 2008(3):48-52. |
FU L Y, LIU Y G, ZHANG H D. Research on the fitting for the normal distribution of main tree species’ diameter in Pangquangou Nature Reserve[J]. For Resour Manag, 2008(3):48-52.DOI: 10.3969/j.issn.1002-6622.2008.03.012. | |
[12] | 巢林, 洪滔, 林卓, 等. 中亚热带杉阔混交林直径分布研究[J]. 中南林业科技大学学报, 2014,34(9):31-37. |
CHAO L, HONG T, LIN Z, et al. Study on diameter distribution of Chinese fir and broad-leaved forest in mid-subtropical[J]. J Central South Univ For Technol, 2014,34(9):31-37.DOI: 10.3969/j.issn.1673-923X.2014.09.007. | |
[13] | 王香春, 张秋良, 春兰, 等. 大青山落叶松人工林直径分布规律的研究[J]. 山东农业大学学报(自然科学版), 2011,42(3):349-355. |
WANG X C, ZHANG Q L, CHUN L, et al. Study on the Larix principis-rupprechtii mayr plantations diameter distribution in Daqing Mountain [J]. Journal of Shandong Agricultural University (Natural Science Edition), 2011,42(3):349-355. DOI: 10.3969/j.issn.1000-2324.2011.03.005. | |
[14] | 郝敬锋, 刘红玉, 李玉凤, 等. 基于转移矩阵模型的江苏海滨湿地资源时空演变特征及驱动机制分析[J]. 自然资源学报, 2010,25(11):1918-1929. |
HAO J F, LIU H Y, LI Y F, et al. Spatio-temporal variation and driving forces of the coastal wetland resources based on the transition matrix in Jiangsu Province[J]. J Nat Resour, 2010,25(11):1918-1929.DOI: 10.11849/zrzyxb.2010.11.011. | |
[15] | 符利勇, 张会儒, 李春明, 等. 非线性混合效应模型参数估计方法分析[J]. 林业科学, 2013,49(1):114-119. |
FU L Y, ZHANG H R, LI C M, et al. Analysis of nonlinear mixed effects model parameter estimation methods[J]. Sci Silvae Sin, 2013,49(1):114-119.DOI: 10.11707/j.1001-7488.20130117. | |
[16] | 赖巧玲, 胥辉, 杨为民. 非参数估计在构造树高曲线中的应用[J]. 北京林业大学学报, 2006,28(4):77-81. |
LAI Q L, XU H, YANG W M. Application of nonparametric estimation method in establishing height-diameter curves of trees[J]. J Beijing For Univ, 2006,28(4):77-81.DOI: 10.3321/j.issn:1000-1522.2006.04.015. | |
[17] |
BUCH-LARSEN T, NIELSEN J P, GUILLÉN M, et al. Kernel density estimation for heavy-tailed distributions using the champernowne transformation[J]. Statistics, 2005, 39(6):503-516.DOI: 10.1080/02331880500439782.
doi: 10.1080/02331880500439782 |
[18] |
DIAMANTOPOULOU M J, ÖZÇELIK R, CRECENTE-CAMPO F, et al. Estimation of Weibull function parameters for modelling tree diameter distribution using least squares and artificial neural networks methods[J]. Biosyst Eng, 2015, 133:33-45.DOI: 10.1016/j.biosystemseng.2015.02.013.
doi: 10.1016/j.biosystemseng.2015.02.013 |
[19] |
BULLOCK B P, BURKHART H E. Juvenile diameter distributions of loblolly pine characterized by the two-parameter Weibull function[J]. New Forest, 2005, 29(3):233-244.DOI: 10.1007/s11056-005-5651-5.
doi: 10.1007/s11056-005-5651-5 |
[20] | BORDERS B E, WANG M L, ZHAO D H. Problems of scaling plantation plot diameter distributions to stand level[J]. Forest Science, 2008, 54(3):349-355.DOI: 10.1093/forestscience/54.3.349. |
[21] |
EVANS D L, DREW J H, LEEMIS L M. The distribution of the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling test statistics for exponential populations with estimated parameters[J]. Communications in Statistics Simulation and Computation, 2008, 37(7):1396-1421. DOI: 10.1080/03610910801983160.
doi: 10.1080/03610910801983160 |
[22] | 张会儒, 李春明, 武纪成. 金沟岭天然和半天然混交林林分空间结构比较[J]. 科技导报, 2009,27(19):79-84. |
ZHANG H R, LI C M, WU J C. Comparison of spatial structure for natural and semi-natural mixed forests in jingouling forestry farm,Jilin Province of China[J]. Sci Technol Rev, 2009,27(19):79-84.DOI: 10.3321/j.issn:1000-7857.2009.19.019. | |
[23] | 段爱国, 张建国, 童书振, 等. 杉木人工林林分直径结构动态变化及其密度效应的研究[J]. 林业科学研究, 2004,17(2):178-184. |
DUAN A G, ZHANG J G, TONG S Z, et al. Studies on dynamics of diameter structure of Chinese fir plantations and affection of density on it[J]. For Res, 2004,17(2):178-184.DOI: 10.3321/j.issn:1001-1498.2004.02.007. | |
[24] | 李俊, 佘济云, 胡焕香, 等. 昌化江流域天然林直径结构研究[J]. 中南林业科技大学学报, 2012,32(3):37-43. |
LI J, SHE J Y, HU H X, et al. Research on diameter structure of natural forest in Changhua River Basin[J]. J Central South Univ For Technol, 2012,32(3):37-43.DOI: 10.3969/j.issn.1673-923X.2012.03.007. | |
[25] | NELSON T C. Diameter distribution and growth of Loblolly pine[J]. Forest Science, 10(1):105-114. DOI: 10.1093/forestscience/10.1.105. |
[26] |
PODLASKI R. Forest modelling: the Gamma shape mixture model and simulation of tree diameter distributions[J]. Annals of Forest Science, 2017, 74(2):29. DOI 10.1007/s13595-017-0629-y.
doi: 10.1007/s13595-017-0629-y |
[27] | 周国模, 刘恩斌, 刘安兴, 等. Weibull分布参数辨识改进及对浙江毛竹林胸径年龄分布的测度[J]. 生态学报, 2006,26(9):2918-2926. |
ZHOU G M, LIU E B, LIU A X, et al. The algorithm update of Weibull distribution parametric identification and its application on measuring the distribution of diameter and age of Moso bamboo forests in Zhejiang Province,China[J]. Acta Ecol Sin, 2006,26(9):2918-2926.DOI: 10.3321/j.issn:1000-0933.2006.09.018. | |
[28] | 葛宏立, 周国模, 刘恩斌, 等. 浙江省毛竹直径与年龄的二元Weibull分布模型[J]. 林业科学, 2008,44(12):15-20. |
GE H L, ZHOU G M, LIU E B, et al. Diameter-age bivariate Weibull distribution model for moso bamboo forests in Zhejiang Province[J]. Sci Silvae Sin, 2008,44(12):15-20.DOI: 10.3321/j.issn:1001-7488.2008.12.003. | |
[29] | 王蒙, 李凤日. 基于抚育间伐效应的落叶松人工林直径分布动态模拟[J]. 应用生态学报, 2016,27(8):2429-2437. |
WANG M, LI F R. Modeling the diameter distribution of Larix olgensis plantation based on thinning effects [J]. China J Appl Ecol, 2016,27(8):2429-2437.DOI: 10.13287/j.1001-9332.201608.026. | |
[30] | 庄崇洋, 黄清麟, 马志波, 等. 典型中亚热带天然阔叶林各林层直径分布及其变化规律[J]. 林业科学, 2017,53(4):18-27. |
ZHUANG C Y, HUANG Q L, MA Z B, et al. Diameter distribution in each storey and law of typical natural broad-leaved forest in mid-subtropical zone[J]. Sci Silvae Sin, 2017,53(4):18-27.DOI: 10.11707/j.1001-7488.20170403. | |
[31] | 陈英, 杨华, 赵浩彦, 等. 北京地区侧柏人工林林木直径分布模型研究[J]. 中南林业科技大学学报, 2012,32(9):59-64. |
CHEN Y, YANG H, ZHAO H Y, et al. Study on tree diameter distribution model of Platycluadus orientalis plantation in Beijing [J]. J Central South Univ For Technol, 2012,32(9):59-64.DOI: 10.14067/j.cnki.1673-923x.2012.09.020. | |
[32] | 赵丹丹, 李凤日, 董利虎. 落叶松人工林直径分布动态预估模型1)[J]. 东北林业大学学报, 2015,43(5):42-48. |
ZHAO D D, LI F R, DONG L H. Predicting models of diameter distribution dynamic for larch plantation[J]. J Northeast For Univ, 2015,43(5):42-48.DOI: 10.3969/j.issn.1000-5382.2015.05.009. | |
[33] |
NEWTON P F, LEI Y, ZHANG S Y. Stand-level diameter distribution yield model for black spruce plantations[J]. Forest Ecology and Management, 2005, 209(3):181-192.DOI: 10.1016/j.foreco.2005.01.020.
doi: 10.1016/j.foreco.2005.01.020 |
[34] | 雷娜庆, 铁牛, 刘洋, 等. 兴安落叶松天然林林分直径分布和树高分布[J]. 东北林业大学学报, 2017,45(1):90-93. |
LEI N Q, TIE N, LIU Y, et al. Structure of diameter and height for naturally growing Larix gmelinii forest [J]. J Northeast For Univ, 2017,45(1):90-93.DOI: 10.13759/j.cnki.dlxb.2017.01.019. | |
[35] | 张海平, 李凤日, 董利虎, 等. 基于气象因子的白桦天然林单木直径生长模型[J]. 应用生态学报, 2017,28(6):1851-1859. |
ZHANG H P, LI F R, DONG L H, et al. Individual tree diameter increment model for natural Betula platyphylla forests based on meteorological factors [J]. China J Appl Ecol, 2017,28(6):1851-1859.DOI: 10.13287/j.1001-9332.201706.009. | |
[36] | 陈东升, 李凤日, 孙晓梅, 等. 基于线性混合模型的落叶松人工林节子大小预测模型[J]. 林业科学, 2011,47(11):121-128. |
CHEN D S, LI F R, SUN X M, et al. Models to predict knot size for larch plantation using linear mixed model[J]. Sci Silvae Sin, 2011,47(11):121-128. | |
[37] | 许崇华, 崔珺, 黄兴召, 等. 基于线性混合效应模型的杉木树高-胸径模型[J]. 西北农林科技大学学报(自然科学版), 2017,45(6):53-60. |
XU C H, CUI J, HUANG X Z, et al. Height-diameter model for Chinese fir based on linear mixed model[J]. J Northwest A & F Univ (Nat Sci Ed), 2017,45(6):53-60.DOI: 10.13207/j.cnki.jnwafu.2017.06.008. | |
[38] | 王冬至, 张冬燕, 张志东, 等. 基于非线性混合模型的针阔混交林树高与胸径关系[J]. 林业科学, 2016,52(1):30-36. |
WANG D Z, ZHANG D Y, ZHANG Z D, et al. Height-diameter relationship for conifer mixed forest based on nonlinear mixed-effects model[J]. Sci Silvae Sin, 2016,52(1):30-36.DOI: 10.11707/j.1001-7488.20160104. | |
[39] | VON GADOW K. Fitting distributions in Pinus patula stands[J]. S Afr N For J, 1983, 126(1):20-29.DOI: 10.1080/00382167.1983.9628894. |
[40] | 李春明. 混合效应模型在森林生长模拟研究中的应用[D]. 北京:中国林业科学研究院, 2010. |
LI C M. Application of mixed effects models in forest growth models[D]. Beijing: Chinese Academy of Forestry, 2010. | |
[41] | 李春明. 基于两层次线性混合效应模型的杉木林单木胸径生长量模型[J]. 林业科学, 2012,48(3):66-73. |
LI C M. Individual tree diameter increment model for Chinese fir plantation based on two-level linear mixed effects models[J]. Sci Silvae Sin, 2012,48(3):66-73.DOI: 10.11707/j.1001-7488.20120311. | |
[42] | 许昊, 孙玉军, 王新杰, 等. 利用线性混合效应模型模拟杉木人工林枝条生物量[J]. 应用生态学报, 2015,26(10):2969-2977. |
XU H, SUN Y J, WANG X J, et al. Simulation of the branch biomass for Chinese fir plantation using the linear mixed effects model[J]. Chin J Appl Ecol, 2015,26(10):2969-2977.DOI: 10.13287/j.1001-9332.20150921.026. | |
[43] | PINHEIRO J C, BATES D M, LINDSTROM M J. Model building for nonlinear mixed effects models[R]. Madision: Department of Statistics University of Wisconsin, 1994. |
[44] |
CALAMA R, MONTERO G. Interregional nonlinear height diameter model with random coefficients for stone pine in Spain[J]. Can J For Res, 2004, 34(1):150-163.DOI: 10.1139/x03-199.
doi: 10.1139/x03-199 |
[45] | 董灵波, 刘兆刚, 李凤日, 等. 基于线性混合模型的红松人工林一级枝条大小预测模拟[J]. 应用生态学报, 2013,24(9):2447-2456. |
DONG L B, LIU Z G, LI F R, et al. Primary branch size of Pinus koraiensis plantation:a prediction based on linear mixed effect model [J]. Chin J Appl Ecol, 2013,24(9):2447-2456.DOI: 10.13287/j.1001-9332.2013.0490. |
[1] | 赵金满, 韩馨悦, 程瑞明, 张志东. 塞罕坝自然保护区华北落叶松和樟子松人工林健康评价[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 199-206. |
[2] | 王云霓, 曹恭祥, 徐丽宏, 陈胜楠. 内蒙古大青山华北落叶松人工林蒸散特征及其影响因子[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 148-156. |
[3] | 刘子宣, 贾存, 秦志强, 李永宁. 华北落叶松林下光环境对白扦幼树生长的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 111-117. |
[4] | 冀盼盼, 张健飞, 张玉珍, 黄选瑞, 张志东. 不同林龄华北落叶松人工林生态化学计量特征[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 126-132. |
[5] | 贾炜玮, 梁玉钊, 李凤日. 落叶松人工林树皮厚度预测模型[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 97-104. |
[6] | 彭娓,李凤日,董利虎. 黑龙江省长白落叶松人工林单木生长模型[J]. 南京林业大学学报(自然科学版), 2018, 42(03): 19-27. |
[7] | 段光爽,李学东,冯岩,符利勇. 基于广义非线性混合效应的华北落叶松天然次生林枝下高模型[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 170-176. |
[8] | 段光爽,李学东,冯岩,符利勇. 华北落叶松天然次生林树高曲线的混合效应模型[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 163-169. |
[9] | 刘宪钊,李卫珍,王金龙,陆元昌,谢阳生. 两种不同起源华北落叶松林空间点格局及植物多样性[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 102-108. |
[10] | 苗铮,董利虎,李凤日,白东雪,王佳慧. 基于GLMM的人工林红松二级枝条分布数量模拟[J]. 南京林业大学学报(自然科学版), 2017, 41(04): 121-128. |
[11] | 黄良帅,韩海荣,牛树奎,程小琴,周文嵩. 华北落叶松冠层光合生理特性的空间异质性[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 193-197. |
[12] | 万芳芳,刘勇,李国雷,孙巧玉,蒋乐,史文辉,滕飞,张劲. 底部渗灌下缓释肥对华北落叶松容器苗生长和氮积累的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(01): 75-81. |
[13] | 陈东升,孙晓梅,李凤日. 落叶松人工林枝条直径和长度的非线性混合模型[J]. 南京林业大学学报(自然科学版), 2015, 39(06): 74-80. |
[14] | 许昊,孙玉军,王新杰,高志雄,董云飞. 基于线性混合模型的杉木人工林枝条大小预测模型[J]. 南京林业大学学报(自然科学版), 2015, 39(02): 97-103. |
[15] | 谢会成;杨茂生. 华北落叶松人工林营养元素的生物循环[J]. 南京林业大学学报(自然科学版), 2002, 26(05): 49-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||