[1] |
余有祥, 周正宝, 徐旻昱 , 等. ‘奥斯特’北美冬青繁育技术[J]. 中国花卉园艺, 2012(14):32-35.
|
|
YU Y X, ZHOU Z B, XU M Y , et al. Breeding technology of Ilex verticillata ‘Oosterwijk’[J]. China Flowers Hortic, 2012(14):32-35.
|
[2] |
陈茜, 周之涵, 王瑞琪 , 等. 低温处理对北美冬青叶片的抗氧化能力的影响[J]. 热带亚热带植物学报, 2016,24(6):689-695.
|
|
CHEN X, ZHOU Z H, WANG R Q , et al. Effect of low temperature stress on antioxidant ability in Ilex verticillata leaves[J]. Journal of Tropical and Subtropical Botany, 2016,24(6):689-695. 10.11926/j.issn.1005-3395.2016.06.013.
|
[3] |
王伟丽, 何立平, 余敏芬 , 等. 12个北美冬青品种的ISSR亲缘关系分析[J]. 浙江农林大学学报, 2018,35(4):612-617.
|
|
WANG W L, HE L P, YU M F , et al. Phylogenetic relationships among 12 cultivars of Ilex verticillata based on ISSR molecular markers[J]. J Zhejiang A F Univ, 2018,35(4):612-617.
|
[4] |
查琳, 袁紫倩, 董建华 , 等. ‘奥斯特’北美冬青在我国的区域性引种试验[J]. 林业科技开发, 2015,29(6):80-82.
|
|
ZHA L, YUAN Z Q, DONG J H , et al. Regional introduction experiment of Ilex verticillata ‘Oosterwijk’[J]. China For Sci Technol, 2015,29(6):80-82. DOI: 10.13360/j.issn.1000-8101.2015.06.020.
|
[5] |
姚丽娟, 周秀兰, 杨燕萍 , 等. 温州地区北美冬青栽培适应性观察[J]. 农业科技通讯, 2016(1):223-224.
|
|
YAO L J, ZHOU X L, YANG Y P , et al. Adaptability of cultivation of Ilex verticillata in Wenzhou area[J]. Bull Agric Sci Tech, 2016(1):223-224.
|
[6] |
吴自光, 孙新新, 翟光耀 , 等. 临沂地区北美冬青引种适应性研究[J]. 现代农业科技, 2017(16):124-125.
|
|
WU Z G, SUN X X, ZHAI G Y , et al. Study on the adaptability of introduction of Ilex verticillata in Linyi area[J]. Mod Agric Sic Technol, 2017(16):124-125.
|
[7] |
李鸿杰, 雷颖 . 甘肃南部北美冬青引种适应性试验研究[J]. 林业科技通讯, 2019(1):39-42.
|
|
LI H J, LEI Y . Study on introduction experiment of Ilex verticillatain in south of Gansu Province[J]. For Sci Technol, 2019 ( 1):39-42. DOI: 10.13456/j.cnki.lykt.2018.10.10.0008.
|
[8] |
张小莉, 王鹏程, 宋纯鹏 . 植物细胞过氧化氢的测定方法[J]. 植物学报, 2009,44(1):103-106.
|
|
ZHANG X L, WANG P C, SONG C P . Methods of detecting hydrogen peroxide in plant cells[J]. Chin Bull Bot, 2009,44(1):103-106.
|
[9] |
李合生 . 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
|
|
LI H S. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000.
|
[10] |
梁锁兴, 席海源, 王文平 , 等. 电解质渗出率配合Logistic方程鉴定7个平欧杂种榛品种(系)的抗寒性[J]. 农学学报, 2017,7(4):34-38.
|
|
LIANG S X, XI H Y, WANG W P , et al. Determination of cold-resistance for 7 flat-European hazel cultivars through electrical permeation rate combining Logistic equation[J]. J Agric, 2017,7(4):34-38.
|
[11] |
王国霞, 王会鱼, 李春阁 , 等. 取样部位、时间对植物高温半致死温度的影响[J]. 福建林业科技, 2019,46(1):45-51.
|
|
WANG G X, WANG H Y, LI C G , et al. Analysis of the influence of sampling site and time on the determination of semilethal high temperature of plants[J]. J Fujian For Sci Technol, 2019,46(1):45-51. DOI: 10.13428/j.cnki.fjlk.2019.01.010
|
[12] |
刘旭梅, 赵冰, 申惠翡 , 等. 低温胁迫下二十个杜鹃花品种的抗寒性评价[J]. 北方园艺, 2017(5):60-66.
|
|
LIU X M, ZHAO B, SHEN H F , et al. Comprehensive evaluation of cold resistance of twenty Rhododendron cultivars under cold stress[J]. North Hortic, 2017(5):60-66. DOI: 10.11937/bfyy.201705015
|
[13] |
MACHADO R D, CHRISTOFF A P, LOSS-MORAIS G , et al. Comprehensive selection of reference genes for quantitative gene expression analysis during seed development in Brassica napus[J]. Plant Cell Rep, 2015,34(7):1139-1149. DOI: 10.1007/s00299-015-1773-1.
doi: 10.1007/s00299-015-1773-1
pmid: 25721200
|
[14] |
陈洁, 金晓玲, 宁阳 , 等. 3 种含笑属植物抗寒生理指标的筛选及评价[J]. 河南农业科学, 2016,45(2) : 113-118.
|
|
CHEN J, JIN X L, NING Y , et al. Identification and comprehensive evaluation of cold resistance indexes of three Michelia plants[J]. Journal of Henan Agricultural Sciences, 2016,45(2) : 113-118. DOI: 10. 15933/j. cnki. 10043268.
|
[15] |
LIU Y S, GENG J C, SHA X Y , et al. Effect of Rhizobium symbiosis on low-temperature tolerance and antioxidant response in alfalfa (Medicago sativa L.)[J]. Front Plant Sci, 2019,10:538. DOI: 10.3389/fpls.2019.00538.
doi: 10.3389/fpls.2019.00538
pmid: 31114600
|
[16] |
池敏杰, 刘育梅 . 3 种番荔枝属植物对低温胁迫的生理响应及抗寒性评价[J]. 2019,48(4):339-342.
|
|
CHI M J, LIU Y M . Physiological response and cold resistance evaluation of three species of Annona to low temperature stress[J]. Subtropical Plant Science, 2019,48(4):339-342. DOI: 10.3969/j.issn.1009-7791.2019.04.006.
|
[17] |
CAO S F, CAI Y T, YANG Z F , et al. MeJA induces chilling tolerance in loquat fruit by regulating proline and γ-aminobutyric acid contents[J]. Food Chem, 2012,133(4):1466-1470. DOI: 10.1016/j.foodchem.2012.02.035.
|
[18] |
BAO G Z, AO Q, LI Q Q , et al. Physiological characteristics of Medicago sativa L. in response to acid deposition and freeze-thaw stress[J]. Water Air Soil Pollut, 2017,228(9):376. DOI: 10.1007/s11270-017-3561-8.
|
[19] |
刘艳菊, 周丽霞, 曹红星 . 低温胁迫下不同浓度ABA对4个油棕新品种幼苗生理特性的影响[J]. 热带作物学报, 2020,41(6):1124-1131.
|
|
LIU Y J, ZHOU L X, CAO H X . Effects of exogenous ABA on physiology of 4 oil Palm new varieties under cold stress[J]. Chinese Journal of Tropical Crops, 2020,41(6):1124-1131.
|
[20] |
曹阳, 张旭艳 . 4种常绿阔叶植物叶片抗寒性研究[J]. 山西农业科学, 2019,47(3):334-336.
|
|
CAO Y, ZHANG X Y . Study on cold resistance of four evergreen broad-leaved plant leaves[J]. J Shanxi Agric Sci, 2019,47(3):334-336. DOI : 10.3969/j.issn.1002-2481.2019.03.10.
|
[21] |
李文明, 魏一粟, 钱燕萍 , 等. 5种酢浆草属植物对低温胁迫的生理响应及抗寒性评价[J]. 东北林业大学学报, 2017,45(7):28-33.
|
|
LI W M, WEI Y S, QIAN Y P , et al. Evaluation of cold resistance and physiological response to low temperature on five kinds of Oxalis plants[J]. J Northeast For Univ, 2017,45(7):28-33. DOI: 10.13759/j.cnki.dlxb.2017.07.006
|
[22] |
原慧芳, 谢江, 周会平 , 等. 不同橡胶树品种耐寒性指标比较及综合评价[J]. 植物资源与环境学报, 2018,27(4):72-80.
|
|
YUAN H F, XIE J, ZHOU H P , et al. Comparison on cold tolerance indexes of different cultivars of Hevea brasiliensis and comprehensive evaluation [J]. J Plant Resour Environ, 2018,27(4):72-80. DOI : 10.3969/j.issn.1674-7895.2018.04.08.
|
[23] |
方仁, 安振宇, 黄伟雄 , 等. 6个番荔枝品种在自然低温条件下的抗寒性比较[J]. 江苏农业科学, 2017,45(7):136-138.
|
|
FANG R, AN Z Y, HUANG W X , et al. Comparison of cold resistance of 6 cherimoya cultivars under natural low temperature[J]. Jiangsu Agric Sci, 2017,45(7):136-138. DOI: 10.15889/j.issn.1002-1302.2017.07.036.
|
[24] |
STEINDAL A L H, RØDVEN R, HANSEN E , et al. Effects of photoperiod,growth temperature and cold acclimatisation on glucosinolates,sugars and fatty acids in kale[J]. Food Chem, 2015,174:44-51. DOI: 10.1016/j.foodchem.2014.10.129.
doi: 10.1016/j.foodchem.2014.10.129
pmid: 25529650
|
[25] |
AIRAKI M, LETERRIER M, MATEOS R M , et al. Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress[J]. Plant Cell Environ, 2012,35(2):281-295. DOI: 10.1111/j.1365-3040.2011.02310.x.
doi: 10.1111/j.1365-3040.2011.02310.x
pmid: 21414013
|
[26] |
CLEMENTE-MORENO M J, OMRANIAN N, SÁEZ P L , et al. Low-temperature tolerance of the Antarctic species Deschampsia antarctica:a complex metabolic response associated with nutrient remobilization[J]. Plant Cell Environ, 2020,13737:1-18. DOI: 10.1111/pce.13737.
|
[27] |
DHARSHINI S, HOANG N V, MAHADEVAIAH C , et al. Root transcriptome analysis of Saccharum spontaneum uncovers key genes and pathways in response to low-temperature stress[J]. Environ Exp Bot, 2020,171:103935. DOI: 10.1016/j.envexpbot.2019.103935.
|