南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (3): 126-132.doi: 10.3969/j.issn.1000-2006.201811032
收稿日期:
2018-11-20
修回日期:
2019-04-06
出版日期:
2020-05-30
发布日期:
2020-06-11
通讯作者:
冀盼盼
作者简介:
冀盼盼(基金资助:
JI Panpan(), ZHANG Jianfei, ZHANG Yuzhen, HUANG Xuanrui(), ZHANG Zhidong
Received:
2018-11-20
Revised:
2019-04-06
Online:
2020-05-30
Published:
2020-06-11
Contact:
JI Panpan
摘要: 探究C、N、P含量及化学计量特征随时间的变化以揭示人工林的养分循环规律,为人工林的高效经营提供参考。 以塞罕坝机械林场幼龄林(14年生)、中龄林(20年生)、近熟林(37年生)的华北落叶松(Larix principis?rupprechtii)人工林为研究对象,采用方差和回归分析的方法,分析针叶和土壤C、N、P含量及化学计量比随林龄的变化规律。 ①不同林龄同一土层土壤P含量差异显著(P<0.05),华北落叶松近熟林土壤P含量显著低于幼龄林和中龄林土壤P含量,C、N含量差异不显著(P>0.05);同一林龄不同土层土壤C、N含量随土层厚度增加呈下降趋势,P含量变化趋势不明显;随着林龄增长和土层厚度的加深,土壤C/N、C/P和N/P(碳氮比、碳磷比和氮磷比)均呈先下降后上升趋势。②不同林龄针叶C和P含量差异不显著(P >0.05),N含量差异显著(P <0.05),华北落叶松中龄林针叶N含量显著低于幼龄林和近熟林针叶N含量;不同林龄针叶C/N、C/P和N/P差异显著(P <0.05),中龄林针叶C/N最高,而近熟林针叶C/P和N/P最高。③不同林龄落叶松林P含量和C/P在针叶与土壤之间呈显著正相关(P <0.05),而C/N在针叶与土壤之间呈显著负相关(P <0.05)。 华北落叶松中龄林生长受土壤N含量限制,而近熟林生长受P含量限制,幼龄林生长尚未表现出土壤养分亏缺。在不同生长阶段进行合理施肥有利于华北落叶松的生长。
中图分类号:
冀盼盼,张健飞,张玉珍,等. 不同林龄华北落叶松人工林生态化学计量特征[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 126-132.
JI Panpan, ZHANG Jianfei, ZHANG Yuzhen, HUANG Xuanrui, ZHANG Zhidong. Ecological stoichiometry characteristics of Larix principis⁃rupprechtii plantations at different ages[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(3): 126-132.DOI: 10.3969/j.issn.1000-2006.201811032.
图1
不同林龄华北落叶松林土壤的C、N、P含量及化学计量比不同大写字母表示同一林龄不同土层土壤之间的差异显著(P<0.05);不同小写字母表示同一土层不同林龄土壤之间的差异显著(P<0.05)。Different capital letters indicate the significant difference between soils in different soil layers of the same forest age (P<0.05). Different lowercase letters indicate the significant difference between different soil ages in the same soil layer (P<0.05)."
表2
不同林龄华北落叶松林针叶的C、N、P含量及化学计量比"
林龄/a age | 有机碳含量/(g·kg-1) organic carbon content | 全氮含量/(g·kg-1)total N content | 全磷含量/(g·kg-1)total P content | C/N | C/P | N/P |
---|---|---|---|---|---|---|
14 | 474.48±9.30 a | 20.55±0.91 a | 1.41±0.03 a | 23.16±0.85 b | 336.62±6.71 b | 14.59±0.80 b |
20 | 474.49±11.98 a | 16.85±0.09 b | 1.49±0.35 a | 28.17±0.69 a | 355.35±78.71 b | 12.74±3.11 b |
37 | 486.54±37.42 a | 21.81±0.72 a | 0.74±0.44 a | 22.29±1.30 b | 689.37±102.0 a | 31.63±6.49 a |
1 | LI H L, CRABBE M, XU F L, et al. Seasonal variations in carbon, nitrogen and phosphorus concentrations and C∶N∶P stoichiometry in the leaves of differently aged Larix principis⁃rupprechtii Mayr. plantations[J]. Forests, 2017, 8(10): 373. DOI:10.3390/f8100373. |
2 | SARDANS J, PEÑUELAS J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant⁃soil system[J]. Plant Physiology, 2012, 160(4): 1741-1761. DOI:10.1104/pp.112.208785. |
3 | KIM H Y, LIM S S, KWAK J H, et al. Dry matter and nitrogen accumulation and partitioning in rice (Oryza sativa L.) exposed to experimental warming with elevated CO2[J]. Plant and Soil, 2011, 342(1/2): 59-71. DOI:10.1007/s11104-010-0665-y. |
4 | 郭子武, 陈双林, 杨清平, 等. 密度对四季竹叶片C、N、P化学计量和养分重吸收特征的影响[J]. 应用生态学报, 2013, 24(4): 893-899. |
GUO Z W, CHEN S L, YANG Q P, et al. Effects of stand density on Oligostachyum lubricum leaf carbon, nitrogen, and phosphorus stoichiometry and nutrient resorption[J]. Chinese Journal of Applied Ecology, 2013, 24(4): 893-899. DOI:10.13287/j.1001-9332.2013.0243. | |
5 | 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947. |
WANG S Q, YU G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937-3947. DOI:10.3321/j.issn:1000-0933.2008.08.054. | |
6 | SARDANS J, RIVAS⁃UBACH A, PEÑUELAS J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives[J]. Biogeochemistry, 2012, 111(1/2/3): 1-39. DOI:10.1007/s10533-011-9640-9. |
7 | D'ANNUNZIO R, ZELLER B, NICOLAS M, et al. Decomposition of European beech (Fagus sylvatica) litter: Combining quality theory and 15N labelling experiments[J]. Soil Biology and Biochemistry, 2008, 40(2): 322-333. DOI:10.1016/j.soilbio.2007.08.011. |
8 | 刘超, 王洋, 王楠, 等. 陆地生态系统植被氮磷化学计量研究进展[J]. 植物生态学报, 2012, 36(11): 1205-1216. |
LIU C, WANG Y, WANG N, et al. Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial ecosystems: a review[J]. Chinese Journal of Plant Ecology, 2012, 36(11): 1205-1216. DOI:10.3724/SP.J.1258.2012.01205. | |
9 | ÅGREN G I. Stoichiometry and nutrition of plant growth in natural communities[J]. Annual Review of Ecology Evolution and Systematics, 2008,39(1):153-170. DOI:10.1146/annurev.ecolsys.39.110707.173515. |
10 | 贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1): 2-6. |
HE J S, HAN X G. Ecological stoichiometry: searching for unifying principles from individuals to ecosystems[J].Chinese Journal of Plant Ecology, 2010, 34(1): 2-6. DOI:10.3773/j.issn.1005-264x.2010.01.002. | |
11 | 曾德慧, 陈广生. 生态化学计量学: 复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29(6): 1007-1019. |
ZENG D H, CHEN G S. Ecological stoichiometry: a science to explore the complexity of living systems[J]. Acta Phytoecologica Sinica, 2005, 29(6): 1007-1019. DOI:10.17521/cjpe.2005.0120. | |
12 | HAN W X, FANG J Y, GUO D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377-385. DOI:10.1111/j.1469-8137.2005.01530.x. |
13 | GÜSEWELL S, GESSNER M O. N∶P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms[J]. Functional Ecology, 2009, 23(1): 211-219. DOI:10.1111/j.1365-2435.2008.01478.x. |
14 | CASTLE S C, NEFF J C. Plant response to nutrient availability across variable bedrock geologies[J]. Ecosystems, 2009, 12(1): 101-113. DOI:10.1007/s10021-008-9210-8. |
15 | 李国雷, 刘勇, 吕瑞恒, 等. 华北落叶松人工林密度调控对林下植被发育的作用过程[J]. 北京林业大学学报, 2009, 31(1): 19-24. |
LI G L, LIU Y, LÜ R H, et al. Responses of understory vegetation development to regulation of tree density in Larix principis⁃rupprechtii plantations[J]. Journal of Beijing Forestry University, 2009, 31(1): 19-24. DOI:10.13332/j.1000-1522.2009.01.016. | |
16 | 耿丽君, 许中旗, 张兴锐, 等. 燕山北部山地华北落叶松人工林生物碳贮量[J]. 东北林业大学学报, 2010, 38(6): 43-45, 52. |
GENG L J, XU Z Q, ZHANG X R, et al. Biological carbon storage in Larix principis⁃rupprechtii plantations in north region of Yanshan Mountain[J]. Journal of Northeast Forestry University, 2010, 38(6): 43-45, 52. DOI:10.3969/j.issn.1000-5382.2010.06.015. | |
17 | 王彬, 魏天兴, 刘钊. 黄土丘陵区华北落叶松人工林生态系统生物量与养分循环特征[J]. 水土保持研究, 2017, 24(6): 45-51. |
WANG B, WEI T X, LIU Z. Characteristics of nutrient cycling and ecosystem structure of Larix principis⁃rupprechtii in hilly Loess Plateau[J]. Research of Soil and Water Conservation, 2017, 24(6): 45-51. DOI:10.13869/j.cnki.rswc.2017.06.009. | |
18 | 刘勇, 李国雷, 林平, 等. 华北落叶松人工幼、中龄林土壤肥力变化[J]. 北京林业大学学报, 2009, 31(3): 17-23. |
LIU Y, LI G L, LIN P, et al. Changes of soil fertility in young and middle aged Larix principis⁃rupprechtii plantations[J]. Journal of Beijing Forestry University, 2009, 31(3): 17-23.DOI:10. 3321/j.issn:1000-1522.2009.03.004. | |
19 | 牛小云, 孙晓梅, 陈东升, 等. 辽东山区不同林龄日本落叶松人工林土壤微生物、养分及酶活性[J]. 应用生态学报, 2015, 26(9): 2663-2672. |
NIU X Y, SUN X M, CHEN D S, et al. Soil microorganisms, nutrients and enzyme activity of Larix kaempferi plantation under different ages in mountainous region of eastern Liaoning Province, China[J]. Chinese Journal of Applied Ecology, 2015, 26(9): 2663-2672. DOI:10.13287/j.1001-9332.20150630.014. | |
20 | 马云波, 许中旗, 张岩, 等. 冀北山区华北落叶松人工林对土壤化学性质的影响[J]. 水土保持学报, 2015, 29(4): 165-170. |
MA Y B, XU Z Q, ZHANG Y, et al. Impact of larch plantation on soil chemical property in north mountain of Hebei[J]. Journal of Soil and Water Conservation, 2015, 29(4): 165-170. DOI:10.13870/j.cnki.stbcxb.2015.04.031. | |
21 | DENG M F, LIU L L, SUN Z Z, et al. Increased phosphate uptake but not resorption alleviates phosphorus deficiency induced by nitrogen deposition in temperate Larix principis⁃rupprechtii plantations[J]. New Phytologist, 2016,212 (4):1019-1029. DOI:10.1111/nph.14083 |
22 | ALLISON S D, GARTNER T B, MACK M C, et al. Nitrogen alters carbon dynamics during early succession in boreal forest[J]. Soil Biology and Biochemistry, 2010, 42(7): 1157-1164. DOI:10.1016/j.soilbio.2010.03.026. |
23 | 鲍士旦. 土壤农化分析[M].3版. 北京:中国农业出版社, 2000:30-177. |
BAO S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000:30-177. | |
24 | 杨小燕, 杨淼焱, 王恩姮, 等. 黑土区不同林龄落叶松人工林土壤磷的吸附与解吸特性[J]. 北京林业大学学报, 2014, 36(5): 39-43. |
YANG X Y, YANG M Y, WANG E H, et al. Soil phosphorus sorption and desorption characteristics of larch plantations at different ages in black soil region[J]. Journal of Beijing Forestry University, 2014, 36(5): 39-43. DOI:10.13332/j.cnki.jbfu.2014.05.008. | |
25 | 牛瑞龙, 高星, 徐福利, 等. 秦岭中幼林龄华北落叶松针叶与土壤的碳氮磷生态化学计量特征[J]. 生态学报, 2016, 36(22): 7384-7392. |
NIU R L, GAO X, XU F L, et al. Carbon, nitrogen, and phosphorus stoichiometric characteristics of soil and leaves from young and middle aged Larix principis⁃rupprechtii growing in a Qinling Mountain plantation[J]. Acta Ecologica Sinica, 2016, 36(22): 7384-7392. DOI:10.5846/stxb201601080057. | |
26 | PRESCOTT C E, ZABEK L M, STALEY C L, et al. Decomposition of broadleaf and needle litter in forests of British Columbia: influences of litter type, forest type, and litter mixtures[J]. Canadian Journal of Forest Research, 2000, 30(11): 1742-1750. DOI:10.1139/x00-097. |
27 | 张泰东, 王传宽, 张全智, 等. 帽儿山5种林型土壤碳氮磷化学计量关系的垂直变化[J]. 应用生态学报, 2017, 28(10): 3135-3143. |
ZHANG T D, WANG C K, ZHANG Q Z, et al. Vertical variation in stoichiometric relationships of soil carbon, nitrogen and phosphorus in five forest types in the Maoershan region, Northeast China[J]. Chinese Journal of Applied Ecology, 2017, 28(10): 3135-3143. DOI:10.13287/j.1001-9332. 201710.025. | |
28 | 张向茹, 马露莎, 陈亚南, 等. 黄土高原不同纬度下刺槐林土壤生态化学计量学特征研究[J]. 土壤学报, 2013, 50(4): 818-825. |
ZHANG X R, MA L S, CHEN Y N, et al. Ecological stoichiometry characteristics of Robinia pseudoacacia forest soil in different latitudes of Loess Plateau[J]. Acta Pedologica Sinica, 2013, 50(4): 818-825. DOI:10.11766/trxb201210130408. | |
29 | GOROKHOVA E. Analysis of nucleic acids in Daphnia: development of methods and ontogenetic variations in RNA⁃DNA content[J]. Journal of Plankton Research, 2002, 24(5): 511-522. DOI:10.1093/plankt/24.5.511. |
30 | YU Q, WU H H, HE N P, et al. Testing the growth rate hypothesis in vascular plants with above⁃and below⁃ground biomass[J]. PLoS One,2012,7(3):e32162. DOI:10.1371/journal.pone. 0032162. |
31 | MATZEK V, VITOUSEK P M. N∶P stoichiometry and protein: RNA ratios in vascular plants: an evaluation of the growth⁃rate hypothesis[J]. Ecology Letters, 2009, 12(8): 765-771. DOI:10.1111/j.1461-0248.2009.01310.x. |
32 | 黄建军, 王希华. 浙江天童32种常绿阔叶树叶片的营养及结构特征[J]. 华东师范大学学报(自然科学版), 2003(1): 92-97. |
HUANG J J, WANG X H. Leaf nutrient and structural characteristics of 32 evergreen broad⁃leaved species[J]. Journal of East China Normal University (Natural Science Edition), 2003(1): 92-97. DOI:10.3969/j.issn.1000-5641.2003.01.016. | |
33 | ELSER J J, FAGAN W F, DENNO R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408(6812): 578-580. DOI:10.1038/35046058. |
34 | KOERSELMAN W, MEULEMAN A F M. The vegetation N∶P ratio: a new tool to detect the nature of nutrient limitation[J]. The Journal of Applied Ecology, 1996, 33(6): 1441. DOI:10.2307/2404783. |
35 | 胡耀升, 么旭阳, 刘艳红. 长白山森林不同演替阶段植物与土壤氮磷的化学计量特征[J]. 应用生态学报, 2014, 25(3): 632-638. |
HU Y S, YAO X Y, LIU Y H. N and P stoichiometric traits of plant and soil in different forest succession stages in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 632-638. DOI: 10.13287/j.1001-9332. 2014.0034. | |
36 | GÜSEWELL S. N∶P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243-266. DOI:10.1111/j.1469-8137.2004.01192.x. |
37 | WU T G, YU M K, GEOFF WANG G, et al. Leaf nitrogen and phosphorus stoichiometry across forty⁃two woody species in Southeast China[J]. Biochemical Systematics and Ecology, 2012, 44: 255-263. DOI:10.1016/j.bse.2012.06.002. |
38 | ELLISON A M. Nutrient limitation and stoichiometry of carnivorous plants[J]. Plant Biology, 2006, 8(6): 740-747. DOI:10.1055/s-2006-923956. |
39 | HÖGBERG M N, CHEN Y, HÖGBERG P. Gross nitrogen mineralisation and fungi⁃to⁃bacteria ratios are negatively correlated in boreal forests[J]. Biology and Fertility of Soils, 2007, 44(2): 363-366. DOI:10.1007/s00374-007-0215-9. |
40 | CHANG Y J, LI N W, WANG W, et al. Nutrients resorption and stoichiometry characteristics of different⁃aged plantations of Larix kaempferi in the Qinling Mountains, central China[J]. PLoS One, 2017, 12(12): e0189424. DOI:10.1371/journal.pone.0189424. |
[1] | 赵金满, 韩馨悦, 程瑞明, 张志东. 塞罕坝自然保护区华北落叶松和樟子松人工林健康评价[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 199-206. |
[2] | 鲁旭东, 董禹然, 李垚, 毛岭峰. 中国亚热带杉木人工林不同林分发育阶段的群落构建机制[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 67-73. |
[3] | 颜铮明, 阮宏华, 廖家辉, 石珂, 倪娟平, 曹国华, 沈彩芹, 丁学农, 赵小龙, 庄鑫. 不同林龄杨树人工林地表甲虫群落多样性特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 236-242. |
[4] | 王云霓, 曹恭祥, 徐丽宏, 陈胜楠. 内蒙古大青山华北落叶松人工林蒸散特征及其影响因子[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 148-156. |
[5] | 原雅楠, 李正才, 王斌, 张雨洁, 黄盛怡. 不同林龄榧树根、枝、叶的C、N、P化学计量及内稳性特征[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 135-142. |
[6] | 刘俊涛, 仲静, 刘济铭, 罗水晶, 王冕之, 范嘉霖, 贾黎明. 无患子初果期人工林土壤和叶片C、N、P化学计量特征[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 67-75. |
[7] | 孙龙, 窦旭, 胡同欣. 林火对森林生态系统碳氮磷生态化学计量特征影响研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 1-9. |
[8] | 刘亚静, 周来, 张博, 陈丽萍, 潘磊, 孙玉军. 不同林龄杉木径向变化及其对气象因子的响应[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 135-144. |
[9] | 郭雯, 漆良华, 雷刚, 胡璇, 张建, 舒琪, 商泽安. 毛竹及其变种叶片化学计量与养分重吸收效率[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 79-85. |
[10] | 刘子宣, 贾存, 秦志强, 李永宁. 华北落叶松林下光环境对白扦幼树生长的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 111-117. |
[11] | 周泽宇, 杨绕华, 张玉珍, 黄选瑞, 张志东, 王冬至, 李大勇. 华北落叶松人工林直径分布预测模型构建[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 117-124. |
[12] | 何斌, 李青, 冯图, 薛晓辉, 李望军, 刘勇. 不同林龄马尾松人工林针叶功能性状及其与土壤养分的关系[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 181-190. |
[13] | 郝玉琢,周磊,吴慧,王树力. 4种类型水曲柳人工林叶片-凋落物-土壤生态化学计量特征比较[J]. 南京林业大学学报(自然科学版), 2019, 43(04): 101-108. |
[14] | 朱雅娟,齐凯,庞志勇. 夏季高寒沙地乌柳林的水分来源[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 91-97. |
[15] | 段光爽,李学东,冯岩,符利勇. 基于广义非线性混合效应的华北落叶松天然次生林枝下高模型[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 170-176. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||