南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (4): 1-11.doi: 10.3969/j.issn.1000-2006.202005036
• 特邀专论 • 下一篇
收稿日期:
2020-05-19
修回日期:
2020-06-16
出版日期:
2020-07-22
发布日期:
2020-08-13
作者简介:
甘四明(基金资助:
Received:
2020-05-19
Revised:
2020-06-16
Online:
2020-07-22
Published:
2020-08-13
摘要:
分子育种是指利用与性状相关的DNA标记进行选育,也称标记辅助选择或标记辅助育种,广义上还包括基因工程育种和基因组学辅助育种。林木分子育种为早期选择和加速育种提供了极具潜力的高效手段。笔者对林木分子育种研究的基因组学信息资源进行了进展综述和前景展望。近30年来,林木分子标记技术从早期的低通量方法发展到目前基于微阵列芯片和新一代测序的高通量技术,如测序分型、转录组测序、重测序、扩增子测序和外显子组测序等,并广泛用于连锁作图、关联分析和基因组选择等林木性状相关的DNA变异检测研究。随着2006年毛果杨基因组序列的发表,已有50余个树种完成了基因组测序。基于连锁作图和关联研究检测了林木10余个属生长、材性和抗逆及非木质产品品质等性状相关的大量基因组位点,主要趋势表现为:① 表型广泛,涵盖经济性状、生理指标和代谢成分等;②标记数量成千上万甚至上百万,覆盖全基因组;③转录组和降解组等多组学的分子变异开始应用;④ 利用大群体以提高位点检测的精度;⑤ 重视环境的影响,大田试验设置多个地点,解析QTL与环境、年份的互作效应;⑥ 结合参考基因组序列和/或转录组差异表达基因进一步挖掘性状相关的候选基因,建立了桉属、松属和云杉属等主要造林树种的基因组选择模型。此外,积累了泛基因组、相关软件和算法、功能基因、基因组编辑技术及网站和数据库等其他信息资源。林木分子育种面临的挑战主要包括:① 如何获得稳定性好的性状相关基因组位点和基因组选择(GS)模型;② 缺乏自动化、无损和高通量的表型测定技术;③对大基因组的针叶树和一些多倍体树种,仍难获得高质量的基因组序列;④ 标记辅助选择增加了常规育种之外的费用,且存在不确定性;⑤多数树种的加速育种仍较困难。后基因组时代的林木分子育种将有效结合到常规育种程序中,显著促进遗传增益的提高。
中图分类号:
甘四明. 林木分子育种研究的基因组学信息资源述评[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 1-11.
GAN Siming. A review on genomics information resources available for molecular breeding studies in forest trees[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(4): 1-11.DOI: 10.3969/j.issn.1000-2006.202005036.
表1
2011年以来基于连锁和关联分析的主要林木性状"
属 genus | 生长性状 growth traits | 木材性质wood property | 抗病虫resistance to pest and disease | 耐逆境tolerance of abiotic | 其他性状other traits |
---|---|---|---|---|---|
杨属 Populus | 根结构、生物量和不定根数量等[60?62],树(苗)高、胸(地)径、材积和生物量及生长增量等[40,45,61?88],分枝[ | 木材基本密度、纤维素含量、半纤维素含量、木素含量、紫丁香基/愈疮木基木素(S/G)、五碳糖含量、六碳糖含量、纤维长和宽及比例、微纤丝角等[36,45,69?79,89?94] | 栅锈菌(Melampsora spp.)[80,94?96],茎溃疡病菌(Sphaerulina musiva)[ | 寒冷、高温、干旱和盐碱[98?99] | 物候(驻芽形成和萌芽)[40,81?83,105?107],代谢成分[ |
桉属 Eucalyptus | 根长和不定根数量等[ | 木材基本密度、纤维素含量、半纤维素含量、木素含量、木素S/G、五碳糖含量、六碳糖含量、微纤丝角、纸浆得率和弹性模量等[117?131] | 彼特氏桉座孢(Quambalaria pitereka)[ | 风害[ | 水分利用效率[ |
松属 Pinus | 树高、胸径、地径、材积和生物量等[44,142?150],干形和分枝等[143?146] | 木材基本密度、纤维素含量、木素含量、甘露糖含量和半乳糖含量等[145?146] | 松树脂溃疡菌(Fusarium circinatum)[ | 干旱[ | 球果迟裂[ |
云杉属 Picea | 树高、胸径和年轮宽度等[49,161?167],树皮厚度等[ | 木材基本密度、弹性模量、微纤丝角和胞壁厚度等[168?169] | 白松木蠹象(Pissodes strobi)[161?162],卷叶蛾(Choristoneura fumiferana)[ | 树脂道数量和面积等[ | |
柳属 Salix | 萌条数量、高、径和生物量等[173?175] ,冠形和冠径等[ | 木材基本密度、纤维素含量、半纤维素含量和木素含量等[ | 栅锈菌(Melampsora spp.)[ | 叶形、叶面积和干质量等[ | |
栎属 Quercus | 白粉菌(Erysiphealphitoides)和疫霉菌(Phytophthora cinnamomi)[ | 叶形、叶面积和干质量等[ | |||
柳杉属 Cryptomeria | 树高和胸径[ | 心材、边材含水率和密度[ | 雄性不育[ | ||
梓属 Catalpa | 树高[ | 叶长、宽和面积等[ | |||
柚木属 Tectona | 木材密度[ | ||||
冷杉属 Abies | 年轮宽度[ | 干旱[ |
1 | FAO. Report of the 14th regular session of the commission on genetic resources for food and agriculture [M/OL]. Rome: Food and Agriculture Organization of the United Nations, 2013. . |
2 | 王明庥.林木遗传育种学[M].北京:中国林业出版社,2001. |
WANG M X.Forest tree genetics and breeding [M].Beijing:China Forestry Publishing House,2001. | |
3 | GRATTAPAGLIA D,SILVA⁃JUNIOR O B,RESENDE R T,et al.Quantitative genetics and genomics converge to accelerate forest tree breeding[J].Front Plant Sci,2018,9:1693. DOI:10.3389/fpls.2018.01693. |
4 | WATSON A,GHOSH S,WILLIAMS M J,et al.Speed breeding is a powerful tool to accelerate crop research and breeding[J].Nat Plants,2018,4(1):23. DOI:10.1038/s41477-017-0083-8. |
5 | MOOSE S P,MUMM R H.Molecular plant breeding as the foundation for 21st century crop improvement[J].Plant Physiol,2008,147(3):969-977. DOI:10.1104/pp.108.118232. |
6 | COBB J N,BISWAS P S,PLATTEN J D.Back to the future:revisiting MAS as a tool for modern plant breeding[J].Theor Appl Genet,2019,132(3):647-667. DOI:10.1007/s00122-018-3266-4. |
7 | PLOMION C,BASTIEN C,BOGEAT⁃TRIBOULOT M B,et al.Forest tree genomics:10 achievements from the past 10 years and future prospects[J].Ann For Sci,2016,73(1):77-103. DOI:10.1007/s13595-015-0488-3. |
8 | VARSHNEY R K,PANDEY M K,BOHRA A,et al.Toward the sequence⁃based breeding in legumes in the post-genome sequencing era[J].Theor Appl Genet,2019,132(3):797-816. DOI:10.1007/s00122-018-3252-x. |
9 | RASHEED A,XIA X C.From markers to genome-based breeding in wheat[J].Theor Appl Genet,2019,132(3):767-784. DOI:10.1007/s00122-019-03286-4. |
10 | 孟凡娟.分子生物学新技术在林木育种中的应用进展[M].北京:科学出版社,2014. |
MENG F J.Progresses on application of new techniques of molecular biology to forest tree breeding[M].Beijing:Science Press,2014. | |
11 | INGVARSSON P K,HVIDSTEN T R,STREET N R.Towards integration of population and comparative genomics in forest trees[J].New Phytol,2016,212(2):338-344. DOI:10.1111/nph.14153. |
12 | TUSKAN G A,GROOVER A T,SCHMUTZ J,et al.Hardwood tree genomics:unlocking woody plant biology[J].Front Plant Sci,2018,9:1799. DOI:10.3389/fpls.2018.01799. |
13 | CHAWLA H S. Introduction to plant biotechnology[M]. 2nd Ed. Enfield: Science Publishers Inc, 2002. |
14 | PARSONS T J,SINKAR V P,STETTLER R F,et al.Transformation of poplar by Agrobacterium tumefaciens[J].Nat Biotechnol,1986,4(6):533-536. DOI:10.1038/nbt0686-533. |
15 | TULSIERAM L K,GLAUBITZ J C,KISS G,et al.Single tree genetic linkage mapping in conifers using haploid DNA from megagametophytes[J].Bio/Technology,1992,10(6):686. DOI:10.1038/nbt0692-686. |
16 | STRAUSS S H,LANDE R,NAMKOONG G.Limitations of molecular⁃marker⁃aided selection in forest tree breeding[J].Can J For Res,1992,22(7):1050-1061. DOI:10.1139/x92-140. |
17 | GRATTAPAGLIA D,SEDEROFF R.Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudotestcross:mapping strategy and RAPD markers[J].Genetics,1994,137(4):1121-1137. |
18 | DEVEY M E,FIDDLER T A,LIU B H,et al.An RFLP linkage map for loblolly pine based on a three⁃generation outbred pedigree[J].Theor Appl Genet,1994,88(3/4):273-278. DOI:10.1007/BF00223631. |
19 | GROOVER A,DEVEY M,FIDDLER T,et al.Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine[J].Genetics,1994,138(4):1293-1300. |
20 | ALLONA I,QUINN M,SHOOP E,et al.Analysis of xylem formation in pine by cDNA sequencing[J].PNAS,1998,95(16):9693-9698. DOI:10.1073/pnas.95.16.9693. |
21 | SEWELL M M,SHERMAN B K,NEALE D B.A consensus map for loblolly pine (Pinus taeda L.).I.Construction and integration of individual linkage maps from two outbred three⁃generation pedigrees[J].Genetics,1999,151(1):321-330. |
22 | TEMESGEN B,BROWN G R,HARRY D E,et al.Genetic mapping of expressed sequence tag polymorphism (ESTP) markers in loblolly pine (Pinus taeda L.)[J].Theor Appl Genet,2001,102(5):664-675. DOI:10.1007/s001220051695. |
23 | CERVERA M T,STORME V,IVENS B,et al.Dense genetic linkage maps of three Populus species (Populus deltoides,P.nigra and P.trichocarpa) based on AFLP and microsatellite markers[J].Genetics,2001,158(2):787-809. |
24 | BRONDANI R,BRONDANI C,GRATTAPAGLIA D.Towards a genus⁃wide reference linkage map for Eucalyptus based exclusively on highly informative microsatellite markers[J].Mol Genet Genom,2002,267(3):338-347. DOI:10.1007/s00438-002-0665-6. |
25 | THUMMA B R,NOLAN M F,EVANS R,et al.Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp[J].Genetics,2005,171(3):1257-1265. DOI:10.1534/genetics.105.042028. |
26 | KIRST M,BASTEN C J,MYBURG A A,et al.Genetic architecture of transcript⁃level variation in differentiating xylem of a Eucalyptus hybrid[J].Genetics,2005,169(4):2295-2303. DOI:10.1534/genetics.104.039198. |
27 | TUSKAN G A,DIFAZIO S,JANSSON S,et al.The genome of black cottonwood,Populus trichocarpa (Torr.& Gray)[J].Science,2006,313(5793):1596-1604. DOI:10.1126/science.1128691. |
28 | KELLEHER C T,CHIU R,SHIN H,et al.A physical map of the highly heterozygous Populus genome:integration with the genome sequence and genetic map and analysis of haplotype variation[J].Plant J,2007,50(6):1063-1078. DOI:10.1111/j.1365-313X.2007.03112.x. |
29 | PAVY N,PELGAS B,BEAUSEIGLE S,et al.Enhancing genetic mapping of complex genomes through the design of highly⁃multiplexed SNP arrays:application to the large and unsequenced genomes of white spruce and black spruce[J].BMC Genom,2008,9(1):1-17. DOI:10.1186/1471-2164-9-21. |
30 | DROST D R,NOVAES E,BOAVENTURA⁃NOVAES C,et al.A microarray⁃based genotyping and genetic mapping approach for highly heterozygous outcrossing species enables localization of a large fraction of the unassembled Populus trichocarpa genome sequence[J].Plant J,2009,58(6):1054-1067. DOI:10.1111/j.1365-313X.2009.03828.x. |
31 | SANSALONI C,PETROLI C,CARLING J,et al.A high⁃density Diversity Arrays Technology (DArT) microarray for genome⁃wide genotyping in Eucalyptus[J].Plant Methods,2010,6(1):16. DOI:10.1186/1746-4811-6-16. |
32 | GERALDES A,PANG J,THIESSEN N,et al.SNP discovery in black cottonwood (Populus trichocarpa) by population transcriptome resequencing[J].Mol Ecol Resour,2011,11:81-92. DOI:10.1111/j.1755-0998.2010.02960.x. |
33 | RESENDE M D V,RESENDE JR M F R,SANSALONI C P,et al.Genomic selection for growth and wood quality in Eucalyptus:capturing the missing heritability and accelerating breeding for complex traits in forest trees[J].New Phytol,2012,194(1):116-128. DOI:10.1111/j.1469-8137.2011.04038.x. |
34 | PARCHMAN T L,GOMPERT Z,MUDGE J,et al.Genome⁃wide association genetics of an adaptive trait in lodgepole pine[J].Mol Ecol,2012,21(12):2991-3005. DOI:10.1111/j.1365-294X.2012.05513.x. |
35 | NYSTEDT B,STREET N R,WETTERBOM A,et al.The Norway spruce genome sequence and conifer genome evolution[J].Nature,2013,497(7451):579. DOI:10.1038/nature12211. |
36 | PORTH I,KLÁPŠTĚ J,SKYBA O,et al.Populus trichocarpa cell wall chemistry and ultrastructure trait variation,genetic control and genetic correlations[J].New Phytol,2013,197(3):777-790. DOI:10.1111/nph.12014. |
37 | NEVES L G,DAVIS J M,BARBAZUK W B,et al.Whole⁃exome targeted sequencing of the uncharacterized pine genome[J].Plant J,2013,75(1):146-156. DOI:10.1111/tpj.12193. |
38 | MYBURG A A,GRATTAPAGLIA D,TUSKAN G A,et al.The genome of Eucalyptus grandis[J].Nature,2014,510(7505):356. DOI:10.1038/nature13308. |
39 | NEALE D B,WEGRZYN J L,STEVENS K A,et al.Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies[J].Genome Biol,2014,15(3):1-13. DOI:10.1186/gb-2014-15-3-r59. |
40 | EVANS L M,SLAVOV G T,RODGERS⁃MELNICK E,et al.Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations[J].Nat Genet,2014,46(10):1089. DOI:10.1038/ng.3075. |
41 | ZHOU X H,JACOBS T B,XUE L J,et al.Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4⁃coumarate:CoA ligase specificity and redundancy[J].New Phytol,2015,208(2):298-301. DOI:10.1111/nph.13470. |
42 | SILVA⁃JUNIOR O B,FARIA D A,GRATTAPAGLIA D.A flexible multi⁃species genome⁃wide 60K SNP chip developed from pooled resequencing of 240 Eucalyptus tree genomes across 12 species[J].New Phytol,2015,206(4):1527-1540. DOI:10.1111/nph.13322. |
43 | ZHANG J,YANG Y,ZHENG K J,et al.Genome⁃wide association studies and expression⁃based quantitative trait loci analyses reveal roles of HCT2 in caffeoylquinic acid biosynthesis and its regulation by defense⁃responsive transcription factors in Populus[J].New Phytol,2018,220(2):502-516. DOI:10.1111/nph.15297. |
44 | DE LA TORRE A R,PUIU D,CREPEAU M W,et al.Genomic architecture of complex traits in loblolly pine[J].New Phytol,2019,221(4):1789-1801. DOI:10.1111/nph.15535. |
45 | LU W J,XIAO L,QUAN M Y,et al.Linkage⁃linkage disequilibrium dissection of the epigenetic quantitative trait loci (epiQTLs) underlying growth and wood properties in Populus[J].New Phytol,2020,225(3):1218-1233. DOI:10.1111/nph.16220. |
46 | GROVER A,SHARMA P C.Development and use of molecular markers:past and present[J].Crit Rev Biotechnol,2016,36(2):290-302. DOI:10.3109/07388551.2014.959891. |
47 | GARRIDO⁃CARDENAS J A,MESA⁃VALLE C,MANZANO⁃AGUGLIARO F.Trends in plant research using molecular markers[J].Planta,2018,247(3):543-557. DOI:10.1007/s00425-017-2829-y. |
48 | PARCHMAN T L,JAHNER J P,UCKELE K A,et al.RADseq approaches and applications for forest tree genetics[J].Tree Genet Genomes,2018,14(3):1-25. DOI:10.1007/s11295-018-1251-3. |
49 | PAVY N,LAMOTHE M,PELGAS B,et al.A high⁃resolution reference genetic map positioning 8.8 K genes for the conifer white spruce:structural genomics implications and correspondence with physical distance[J].Plant J,2017,90(1):189-203. DOI:10.1111/tpj.13478. |
50 | NEALE D B,MARTÍNEZ⁃GARCÍA P J,DE LA TORRE A R,et al.Novel insights into tree biology and genome evolution as revealed through genomics[J].Annu Rev Plant Biol,2017,68:457-483. DOI:10.1146/annurev-arplant-042916-041049. |
51 | 刘海琳,尹佟明.全基因组测序技术研究及其在木本植物中的应用[J].南京林业大学学报(自然科学版),2018,42(5):172-178. |
LIU H L,YIN T M.Progress on the whole genome sequencing and the application in woody plants[J].J Nanjing For Univ (Nat Sci Ed),2018,42(5):172-178. | |
52 | XIA W X,XIAO Z A,CAO P,et al.Construction of a high⁃density genetic map and its application for leaf shape QTL mapping in poplar[J].Planta,2018,248(5):1173-1185. DOI:10.1007/s00425-018-2958-y. |
53 | MIZRACHI E,VERBEKE L,CHRISTIE N,et al.Network⁃based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing[J].Proc Natl Acad Sci USA,2017,114(5):1195-1200. DOI:10.1073/pnas.1620119114. |
54 | SCAGLIONE D,PINOSIO S,MARRONI F,et al.Single primer enrichment technology as a tool for massive genotyping:a benchmark on black poplar and maize[J].Ann Bot,2019,124(4):543-551. DOI:10.1093/aob/mcz054. |
55 | LIU J J,SCHOETTLE A W,SNIEZKO R A,et al.Limber pine (Pinus flexilis James) genetic map constructed by exome⁃seq provides insight into the evolution of disease resistance and a genomic resource for genomics⁃based breeding[J].Plant J,2019,98(4):745-758. DOI:10.1111/tpj.14270. |
56 | SEMAGN K,BABU R,HEARNE S,et al.Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP):overview of the technology and its application in crop improvement[J].Mol Breed,2014,33(1):1-14. DOI:10.1007/s11032-013-9917-x. |
57 | LONG Y M,CHAO W S,MA G J,et al.An innovative SNP genotyping method adapting to multiple platforms and throughputs[J].Theor Appl Genet,2017,130(3):597-607. DOI:10.1007/s00122-016-2838-4. |
58 | JATAYEV S,KURISHBAYEV A,ZOTOVA L,et al.Advantages of Amplifluor⁃like SNP markers over KASP in plant genotyping[J].BMC Plant Biol,2017,17(2):83-93. DOI:10.1186/s12870-017-1197-x. |
59 | NEALE D B,KREMER A.Forest tree genomics:growing resources and applications[J].Nat Rev Genet,2011,12(2):111. DOI:10.1038/nrg2931. |
60 | RIBEIRO C L,SILVA C M,DROST D R,et al.Integration of genetic,genomic and transcriptomic information identifies putative regulators of adventitious root formation in Populus[J].BMC Plant Biol,2016,16(1):1-11. DOI:10.1186/s12870-016-0753-0. |
61 | ZHANG M M,BO W H,XU F,et al.The genetic architecture of shoot⁃root covariation during seedling emergence of a desert tree,Populus euphratica[J].Plant J,2017,90(5):918-928. DOI:10.1111/tpj.13518. |
62 | INDURI B R,ELLIS D R,SLAVOV G T,et al.Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus[J].Tree Physiol,2012,32(5):626-638. DOI:10.1093/treephys/tps032. |
63 | DU Q Z,GONG C R,WANG Q S,et al.Genetic architecture of growth traits in Populus revealed by integrated quantitative trait locus (QTL) analysis and association studies[J].New Phytol,2016,209(3):1067-1082. DOI:10.1111/nph.13695. |
64 | XU M,JIANG L B,ZHU S,et al.A computational framework for mapping the timing of vegetative phase change[J].New Phytol,2016,211(2):750-760. DOI:10.1111/nph.13907. |
65 | JIANG L B,YE M X,ZHU S,et al.Computational identification of genes modulating stem height⁃diameter allometry[J].Plant Biotechnol J,2016,14(12):2254-2264. DOI:10.1111/pbi.12579. |
66 | ZHIGUNOV A V,ULIANICH P S,LEBEDEVA M V,et al.Development of F1 hybrid population and the high⁃density linkage map for European aspen (Populus tremula L.) using RADseq technology[J].BMC Plant Biol,2017,17(1):1-12. DOI:10.1186/s12870-017-1127-y. |
67 | LIU J Y,YE M X,ZHU S,et al.Two⁃stage identification of SNP effects on dynamic poplar growth[J].Plant J,2018,93(2):286-296. DOI:10.1111/tpj.13777. |
68 | DU Q Z,YANG X H,XIE J B,et al.Time⁃specific and pleiotropic quantitative trait loci coordinately modulate stem growth in Populus[J].Plant Biotechnol J,2019,17(3):608-624. DOI:10.1111/pbi.13002. |
69 | TIAN J X,CHANG M Q,DU Q Z,et al.Single⁃nucleotide polymorphisms in PtoCesA7 and their association with growth and wood properties in Populus tomentosa[J].Mol Genet Genom,2014,289(3):439-455. DOI:10.1007/s00438-014-0824-6. |
70 | DU Q Z,TIAN J X,YANG X H,et al.Identification of additive,dominant,and epistatic variation conferred by key genes in cellulose biosynthesis pathway in Populus tomentosa[J].DNA Res,2015,22(1):53-67. DOI:10.1093/dnares/dsu040. |
71 | YANG X H,DU Q Z,CHEN J H,et al.Association mapping in Populus reveals the interaction between Pto⁃miR530a and its target Pto-KNAT1[J].Planta,2015,242(1):77-95. DOI:10.1007/s00425-015-2287-3. |
72 | YANG H J,YANG X H,WANG L X,et al.Single nucleotide polymorphisms in two GID1 orthologs associate with growth and wood property traits in Populus tomentosa[J].Tree Genet Genomes,2016,12(6):1-15. DOI:10.1007/s11295-016-1070-3. |
73 | CHEN J H,XIE J B,CHEN B B,et al.Genetic variations and miRNA⁃target interactions contribute to natural phenotypic variations in Populus[J].New Phytol,2016,212(1):150-160. DOI:10.1111/nph.14040. |
74 | FAHRENKROG A M,NEVES L G,RESENDE JR M F R,et al.Genome⁃wide association study reveals putative regulators of bioenergy traits in Populus deltoides[J].New Phytol,2017,213(2):799-811. DOI:10.1111/nph.14154. |
75 | CHEN B B,CHEN J H,DU Q Z,et al.Genetic variants in microRNA biogenesis genes as novel indicators for secondary growth in Populus[J].New Phytol,2018,219(4):1263-1282. DOI:10.1111/nph.15262. |
76 | QUAN M Y,XIAO L,LU W J,et al.Association genetics in Populus reveal the allelic interactions of pto⁃MIR167a and its targets in wood formation[J].Front Plant Sci,2018,9:744. DOI:10.3389/fpls.2018.00744. |
77 | QUAN M Y,DU Q Z,XIAO L,et al.Genetic architecture underlying the lignin biosynthesis pathway involves noncoding RNAs and transcription factors for growth and wood properties in Populus[J].Plant Biotechnol J,2019,17(1):302-315. DOI:10.1111/pbi.12978. |
78 | TIAN J X,SONG Y P,DU Q Z,et al.Population genomic analysis of gibberellin⁃responsive long non⁃coding RNAs in Populus[J].J Exp Bot,2016,67(8):2467-2482. DOI:10.1093/jxb/erw057. |
79 | XIE J B,TIAN J X,DU Q Z,et al.Association genetics and transcriptome analysis reveal a gibberellin⁃responsive pathway involved in regulating photosynthesis[J].J Exp Bot,2016,67(11):3325-3338. DOI:10.1093/jxb/erw151. |
80 | MCKOWN A D,GUY R D,QUAMME L,et al.Association genetics,geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade⁃offs[J].Mol Ecol,2014,23(23):5771-5790. DOI:10.1111/mec.12969. |
81 | MCKOWN A D,KLÁPŠTĚ J,GUY R D,et al.Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa[J].New Phytol,2014,203(2):535-553. DOI:10.1111/nph.12815. |
82 | MCKOWN A D,GUY R D,KLÁPŠTĚ J,et al.Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa[J].New Phytol,2014,201(4):1263-1276. DOI:10.1111/nph.12601. |
83 | FABBRINI F,GAUDET M,BASTIEN C,et al.Phenotypic plasticity,QTL mapping and genomic characterization of bud set in black poplar[J].BMC Plant Biol,2012,12(1):1-16. DOI:10.1186/1471-2229-12-47. |
84 | MONCLUS R,LEPLÉ J C,BASTIEN C,et al.Integrating genome annotation and QTL position to identify candidate genes for productivity,architecture and water⁃use efficiency in Populus spp[J].BMC Plant Biol,2012,12(1):1-15. DOI:10.1186/1471-2229-12-173. |
85 | CHHETRI H B,MACAYA⁃SANZ D,KAINER D,et al.Multitrait genome⁃wide association analysis of Populus trichocarpa identifies key polymorphisms controlling morphological and physiological traits[J].New Phytol,2019,223(1):293-309. DOI:10.1111/nph.15777. |
86 | BRESADOLA L,CASEYS C,CASTIGLIONE S,et al.Admixture mapping in interspecific Populus hybrids identifies classes of genomic architectures for phytochemical,morphological and growth traits[EB/OL].bioRxiv,2018, DOI:10.1101/497685. |
87 | BDEIR R,MUCHERO W,YORDANOV Y,et al.Quantitative trait locus mapping of Populus bark features and stem diameter[J].BMC Plant Biol,2017,17(1):1-13. DOI:10.1186/s12870-017-1166-4. |
88 | BDEIR R,MUCHERO W,YORDANOV Y,et al.Genome⁃wide association studies of bark texture in Populus trichocarpa[J].Tree Genet Genomes,2019,15(1):1-14. DOI:10.1007/s11295-019-1320-2. |
89 | WEGRZYN J L,ECKERT A J,CHOI M,et al.Association genetics of traits controlling lignin and cellulose biosynthesis in black cottonwood (Populus trichocarpa,Salicaceae) secondary xylem[J].New Phytol,2010,188(2):515-532. DOI:10.1111/j.1469-8137.2010.03415.x. |
90 | GUERRA F P,WEGRZYN J L,SYKES R,et al.Association genetics of chemical wood properties in black poplar (Populus nigra)[J].New Phytol,2013,197(1):162-176. DOI:10.1111/nph.12003. |
91 | PORTH I,KLAPŠTE J,SKYBA O,et al.Genome⁃wide association mapping for wood characteristics in Populus identifies an array of candidate single nucleotide polymorphisms[J].New Phytol,2013,200(3):710-726. DOI:10.1111/nph.12422. |
92 | PORTH I,KLÁPŠTĚ J,SKYBA O,et al.Network analysis reveals the relationship among wood properties,gene expression levels and genotypes of natural Populus trichocarpa accessions[J].New Phytol,2013,200(3):727-742. DOI:10.1111/nph.12419. |
93 | MUCHERO W,GUO J J,DIFAZIO S P,et al.High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus[J].BMC Genom,2015,16(1):1-14. DOI:10.1186/s12864-015-1215-z. |
94 | PORTH I,KLÁPŠTĚ J,MCKOWN A D,et al.Extensive functional pleiotropy of REVOLUTA substantiated through forward genetics[J].Plant Physiol,2014,164(2):548-554. DOI:10.1104/pp.113.228783. |
95 | BRESSON A,JORGE V,DOWKIW A,et al.Qualitative and quantitative resistances to leaf rust finely mapped within two nucleotide⁃binding site leucine⁃rich repeat (NBS⁃LRR)⁃rich genomic regions of chromosome 19 in poplar[J].New Phytol,2011,192(1):151-163. DOI:10.1111/j.1469-8137.2011.03786.x. |
96 | MANTIA JLA,KLÁPŠTĚ J,EL⁃KASSABY Y A,et al.Association analysis identifies Melampsora × Columbiana poplar leaf rust resistance SNPs[J].PLoS One,2013,8(11):e78423. DOI:10.1371/journal.pone.0078423. |
97 | MUCHERO W,SONDRELI K L,CHEN J G,et al.Association mapping,transcriptomics,and transient expression identify candidate genes mediating plant–pathogen interactions in a tree[J].PNAS,2018,115(45):11573-11578. DOI:10.1073/pnas.1804428115. |
98 | LI Y,XU B H,DU Q Z,et al.Transcript abundance patterns of Populus C⁃repeat binding factor2 orthologs and genetic association of PsCBF2 allelic variation with physiological and biochemical traits in response to abiotic stress[J].Planta,2015,242(1):295-312. DOI:10.1007/s00425-015-2307-3. |
99 | LI Y,XU B H,DU Q Z,et al.Association genetics and expression patterns of a CBF4 homolog in Populus under abiotic stress[J].Mol Genet Genom,2015,290(3):913-928. DOI:10.1007/s00438-014-0967-5. |
100 | MENON M,BARNES W J,OLSON M S.Population genetics of freeze tolerance among natural populations of Populus balsamifera across the growing season[J].New Phytol,2015,207(3):710-722. DOI:10.1111/nph.13381. |
101 | LINDTKE D,GONZÁLEZ⁃MARTÍNEZ S C,MACAYA⁃SANZ D,et al.Admixture mapping of quantitative traits in Populus hybrid zones:power and limitations[J].Heredity,2013,111(6):474. DOI:10.1038/hdy.2013.69. |
102 | DROST D R,PURANIK S,NOVAES E,et al.Genetical genomics of Populus leaf shape variation[J].BMC Plant Biol,2015,15(1):1-10. DOI:10.1186/s12870-015-0557-7. |
103 | CI D,SONG Y P,DU Q Z,et al.Variation in genomic methylation in natural populations of Populus simonii is associated with leaf shape and photosynthetic traits[J].J Exp Bot,2016,67(3):723-737. DOI:10.1093/jxb/erv485. |
104 | XIAO L,LIU X,LU W J,et al.Genetic dissection of the gene coexpression network underlying photosynthesis in Populus[J].Plant Biotechnol J,2020,18(4):1015-1026. DOI:10.1111/pbi.13270. |
105 | ROHDE A,STORME V,JORGE V,et al.Bud set in poplar⁃genetic dissection of a complex trait in natural and hybrid populations[J].New Phytol,2011,189(1):106-121. DOI:10.1111/j.1469-8137.2010.03469.x. |
106 | MCKOWN A D,KLÁPŠTĚ J,GUY R D,et al.Ecological genomics of variation in bud⁃break phenology and mechanisms of response to climate warming in Populus trichocarpa[J].New Phytol,2018,220(1):300-316. DOI:10.1111/nph.15273. |
107 | WANG J,DING J H,TAN B Y,et al.A major locus controls local adaptation and adaptive life history variation in a perennial plant[J].Genome Biol,2018,19(1):1-17. DOI:10.1186/s13059-018-1444-y. |
108 | LABBÉ J,JORGE V,KOHLER A,et al.Identification of quantitative trait loci affecting ectomycorrhizal symbiosis in an interspecific F1 poplar cross and differential expression of genes in ectomycorrhizas of the two parents:Populus deltoides and Populus trichocarpa[J].Tree Genet Genomes,2011,7(3):617-627. DOI:10.1007/s11295-010-0361-3. |
109 | 于晓丽,李发根,翁启杰,等.桉树扦插生根和生长性状的QTL定位[J].林业科学研究,2011,24(2):200-204. |
YU X L,LI F G,WENG Q J,et al.Detection of quantitative trait loci related with rooting ability of cuttings and growth of Eucalyptus[J].For Res,2011,24(2):200-204. DOI:10.13275/j.cnki.lykxyj.2011.02.018. | |
110 | BARTHOLOMÉ J,SALMON F,VIGNERON P,et al.Plasticity of primary and secondary growth dynamics in Eucalyptushybrids:a quantitative genetics and QTL mapping perspective[J].BMC Plant Biol,2013,13(1):1-14. DOI:10.1186/1471-2229-13-120. |
111 | 宋志姣,翁启杰,周长品,等.细叶桉(Eucalyptus tereticornis)早期生长的SSR标记关联分析[J].分子植物育种,2016,14(1):195-203. |
SONG Z J,WENG Q J,ZHOU C P,et al.SSR markers associated with early growth in Eucalyptus tereticornis[J].Mol Plant Breed,2016,14(1):195-203. DOI:10.13271/j.mpb.014.000195. | |
112 | MÜLLER B S F,DE ALMEIDA FILHO J E,LIMA B M,et al.Independent and Joint⁃GWAS for growth traits in Eucalyptus by assembling genome⁃wide data for 3373 individuals across four breeding populations[J].New Phytol,2019,221(2):818-833. DOI:10.1111/nph.15449. |
113 | BARTHOLOMÉ J,MABIALA A,SAVELLI B,et al.Genetic architecture of carbon isotope composition and growth in Eucalyptus across multiple environments[J].New Phytol,2015,206(4):1437-1449. DOI:10.1111/nph.13301. |
114 | 尚秀华,张沛健,谢耀坚,等.赤桉抗风和生长性状的SSR关联分析[J].南京林业大学学报(自然科学版),2018,42(4):97-105. |
SHANG X H,ZHANG P J,XIE Y J,et al.SSR association analysis of Eucalyptus camaldulensis wind resistance and growth traits[J].J Nanjing For Univ (Nat Sci Ed),2018,42(4):97-105. | |
115 | AMMITZBOLL H,VAILLANCOURT R E,POTTS B M,et al.Independent genetic control of drought resistance,recovery,and growth of Eucalyptus globulus seedlings[J].Plant Cell Environ,2020,43(1):103-115. DOI:10.1111/pce.13649. |
116 | KAINER D,PADOVAN A,DEGENHARDT J,et al.High marker density GWAS provides novel insights into the genomic architecture of terpene oil yield in Eucalyptus[J].New Phytol,2019,223(3):1489-1504. DOI:10.1111/nph.15887. |
117 | THAVAMANIKUMAR S,TIBBITS J,MCMANUS L,et al.Candidate gene⁃based association mapping of growth and wood quality traits in Eucalyptus globulus Labill[J].BMC Proc,2011,5(7):1-2. DOI:10.1186/1753-6561-5-S7-O15. |
118 | GION J M,CAROUCHÉ A,DEWEER S,et al.Comprehensive genetic dissection of wood properties in a widely⁃grown tropical tree:Eucalyptus[J].BMC Genom,2011,12(1):1-19. DOI:10.1186/1471-2164-12-301. |
119 | MANDROU E,HEIN P R G,VILLAR E,et al.A candidate gene for lignin composition in Eucalyptus:cinnamoyl⁃CoA reductase (CCR)[J].Tree Genet Genomes,2012,8(2):353-364. DOI:10.1007/s11295-011-0446-7. |
120 | KULLAN A R K,VAN DYK M M,HEFER C A,et al.Genetic dissection of growth,wood basic density and gene expression in interspecific backcrosses of Eucalyptus grandis and E.urophylla[J].BMC Genet,2012,13(1):1-12. DOI:10.1186/1471-2156-13-60. |
121 | FREEMAN J S,POTTS B M,DOWNES G M,et al.Stability of quantitative trait loci for growth and wood properties across multiple pedigrees and environments in Eucalyptus globulus[J].New Phytol,2013,198(4):1121-1134. DOI:10.1111/nph.12237. |
122 | DENIS M,FAVREAU B,UENO S,et al.Genetic variation of wood chemical traits and association with underlying genes in Eucalyptus urophylla[J].Tree Genet Genomes,2013,9(4):927-942. DOI:10.1007/s11295-013-0606-z. |
123 | CAPPA E P,EL⁃KASSABY Y A,GARCIA M N,et al.Impacts of population structure and analytical models in genome⁃wide association studies of complex traits in forest trees:a case study in Eucalyptus globulus[J].PLoS One,2013,8(11):e81267. DOI:10.1371/journal.pone.0081267. |
124 | THAVAMANIKUMAR S,MCMANUS L J,ADES P K,et al.Association mapping for wood quality and growth traits in Eucalyptus globulus ssp.globulus Labill identifies nine stable marker⁃trait associations for seven traits[J].Tree Genet Genomes,2014,10(6):1661-1678. DOI:10.1007/s11295-014-0787-0. |
125 | LI F G,ZHOU C P,WENG Q J,et al.Comparative genomics analyses reveal extensive chromosome colinearity and novel quantitative trait loci in Eucalyptus[J].PLoS One,2015,10(12):e0145144. DOI:10.1371/journal.pone.0145144. |
126 | DILLON S K,BRAWNER J T,MEDER R,et al.Association genetics in Corymbia citriodora subsp.variegata identifies single nucleotide polymorphisms affecting wood growth and cellulosic pulp yield[J].New Phytol,2012,195(3):596-608. DOI:10.1111/j.1469-8137.2012.04200.x. |
127 | RESENDE R T,RESENDE M D V,SILVA F F,et al.Regional heritability mapping and genome⁃wide association identify loci for complex growth,wood and disease resistance traits in Eucalyptus[J].New Phytol,2017,213(3):1287-1300. DOI:10.1111/nph.14266. |
128 | KLÁPŠTĚ J,SUONTAMA M,TELFER E,et al.Exploration of genetic architecture through sib⁃ship reconstruction in advanced breeding population of Eucalyptus nitens[J].PLoS One,2017,12(9):e0185137. DOI:10.1371/journal.pone.0185137. |
129 | MARCO DE LIMA B,CAPPA E P,SILVA⁃JUNIOR O B,et al.Quantitative genetic parameters for growth and wood properties in Eucalyptus “urograndis” hybrid using near⁃infrared phenotyping and genome⁃wide SNP⁃based relationships[J].PLoS One,2019,14(6):e0218747. DOI:10.1371/journal.pone.0218747. |
130 | SEXTON T R,HENRY R J,HARWOOD C E,et al.Pectin Methylesterase genes influence solid wood properties of Eucalyptus pilularis[J].Plant Physiol,2012,158(1):531-541. DOI:10.1104/pp.111.181602. |
131 | MANDROU E,DENIS M,PLOMION C,et al.Nucleotide diversity in lignification genes and QTNs for lignin quality in a multi⁃parental population of Eucalyptus urophylla[J].Tree Genet Genomes,2014,10(5):1281-1290. DOI:10.1007/s11295-014-0760-y. |
132 | BUTLER J B,POTTS B M,VAILLANCOURT R E,et al.Independent QTL underlie resistance to the native pathogen Quambalaria pitereka and the exotic pathogen Austropuccinia psidii in Corymbia[J].Tree Genet Genomes,2019,15(5):1-15. DOI:10.1007/s11295-019-1378-x. |
133 | ALVES A A,ROSADO C C G,FARIA D A,et al.Genetic mapping provides evidence for the role of additive and non⁃additive QTLs in the response of inter⁃specific hybrids of Eucalyptus to Puccinia psidii rust infection[J].Euphytica,2012,183(1):27-38. DOI:10.1007/s10681-011-0455-5. |
134 | BUTLER J B,FREEMAN J S,VAILLANCOURT R E,et al.Evidence for different QTL underlying the immune and hypersensitive responses of Eucalyptus globulus to the rust pathogen Puccinia psidii[J].Tree Genet Genomes,2016,12(3):1-13. DOI:10.1007/s11295-016-0987-x. |
135 | ZARPELON T G,SILVA GUIMARÃES L M,FARIA D A,et al.Genetic mapping and validation of QTLs associated with resistance to Calonectria leaf blight caused by Calonectria pteridis in Eucalyptus[J].Tree Genet Genomes,2014,11(1):1-9. DOI:10.1007/s11295-014-0803-4. |
136 | ROSADO C C G,SILVA GUIMARÃES L M,FARIA D A,et al.QTL mapping for resistance to Ceratocystis wilt in Eucalyptus[J].Tree Genet Genomes,2016,12(4):1-10. DOI:10.1007/s11295-016-1029-4. |
137 | ZHANG M M,ZHOU C P,SONG Z J,et al. The first identification of genomic loci in plants associated with resistance to galling insects:a case study in Eucalyptus L. (Myrtaceae)[J].Sci Rep,,8(1):2319. DOI:10.1038/s41598-018-20780-9. |
138 | BORTOLOTO T M,FUCHS⁃FERRAZ M C P,KETTENER K,et al.Identification of a molecular marker associated with lignotuber in Eucalyptus ssp[J].Sci Rep,2020,10:3608. DOI:10.1038/s41598-020-60308-8. |
139 | KÜLHEIM C,YEOH S H,WALLIS I R,et al.The molecular basis of quantitative variation in foliar secondary metabolites in Eucalyptus globulus[J].New Phytol,2011,191(4):1041-1053. DOI:10.1111/j.1469-8137.2011.03769.x. |
140 | GOSNEY B J,POTTS B M,O'REILLY⁃WAPSTRA J M,et al.Genetic control of cuticular wax compounds in Eucalyptus globulus[J].New Phytol,2016,209(1):202-215. DOI:10.1111/nph.13600. |
141 | PADOVAN A,WEBB H,MAZANEC R,et al.Association genetics of essential oil traits in Eucalyptus loxophleba:explaining variation in oil yield[J].Mol Breed,2017,37(6):1-13. DOI:10.1007/s11032-017-0667-z. |
142 | CABEZAS J A,GONZÁLEZ⁃MARTÍNEZ S C,COLLADA C,et al.Nucleotide polymorphisms in a pine ortholog of the Arabidopsis degrading enzyme cellulase KORRIGAN are associated with early growth performance in Pinus pinaster[J].Tree Physiol,2015,35(9):1000-1006. DOI:10.1093/treephys/tpv050. |
143 | LI Y J,WILCOX P,TELFER E,et al.Association of single nucleotide polymorphisms with form traits in three New Zealand populations of radiata pine in the presence of genotype by environment interactions[J].Tree Genet Genomes,2016,12(4):1-12. DOI:10.1007/s11295-016-1019-6. |
144 | LU M M,KRUTOVSKY K V,NELSON C D,et al.Association genetics of growth and adaptive traits in loblolly pine (Pinus taeda L.) using whole⁃exome⁃discovered polymorphisms[J].Tree Genet Genomes,2017,13(3):1-18. DOI:10.1007/s11295-017-1140-1. |
145 | LEPOITTEVIN C,HARVENGT L,PLOMION C,et al.Association mapping for growth,straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population[J].Tree Genet Genomes,2012,8(1):113-126. DOI:10.1007/s11295-011-0426-y. |
146 | CHHATRE V E,BYRAM T D,NEALE D B,et al.Genetic structure and association mapping of adaptive and selective traits in the east Texas loblolly pine (Pinus taeda L.) breeding populations[J].Tree Genet Genomes,2013,9(5):1161-1178. DOI:10.1007/s11295-013-0624-x. |
147 | CUMBIE W P,ECKERT A,WEGRZYN J,et al.Association genetics of carbon isotope discrimination,height and foliar nitrogen in a natural population of Pinus taeda L[J].Heredity,2011,107(2):105-114. DOI:10.1038/hdy.2010.168. |
148 | LIND B M,FRIEDLINE C J,WEGRZYN J L,et al.Water availability drives signatures of local adaptation in whitebark pine (Pinus albicaulis Engelm.) across fine spatial scales of the Lake Tahoe Basin,USA[J].Mol Ecol,2017,26(12):3168-3185. DOI:10.1111/mec.14106. |
149 | WESTBROOK J W,RESENDE JR M F R,MUNOZ P,et al.Association genetics of oleoresin flow in loblolly pine:discovering genes and predicting phenotype for improved resistance to bark beetles and bioenergy potential[J].New Phytol,2013,199(1):89-100. DOI:10.1111/nph.12240. |
150 | 杨会肖,刘天颐,徐斌,等.火炬松生长和松脂性状相关候选基因的单核苷酸多样性分析[J].华南农业大学学报,2016,37(1):75-81. |
YANG H X,LIU T Y,XU B,et al.Analysis of single nucleotide polymorphisms within candidate genes involved in growth and resin biosynthesis of loblolly pine[J].J South China Agric Univ,2016,37(1):75-81. | |
151 | LIU J J,SCHOETTLE A W,SNIEZKO R A,et al.Genetic mapping of Pinus flexilis major gene (Cr4) for resistance to white pine blister rust using transcriptome⁃based SNP genotyping[J].BMC Genom,2016,17(1):1-12. DOI:10.1186/s12864-016-3079-2. |
152 | VÁZQUEZ⁃LOBO A,DE LA TORRE A R,MARTÍNEZ⁃GARCÍA P J,et al.Finding loci associated to partial resistance to white pine blister rust in sugar pine (Pinus lambertiana Dougl.)[J].Tree Genet Genomes,2017,13(5):1-7. DOI:10.1007/s11295-017-1190-4. |
153 | HIRAO T,MATSUNAGA K,HIRAKAWA H,et al.Construction of genetic linkage map and identification of a novel major locus for resistance to pine wood nematode in Japanese black pine (Pinus thunbergii)[J].BMC Plant Biol,2019,19(1):1-13. DOI:10.1186/s12870-019-2045-y. |
154 | DE MIGUEL M,CABEZAS J A,DE MARÍA N,et al.Genetic control of functional traits related to photosynthesis and water use efficiency in Pinus pinaster Ait.drought response:integration of genome annotation,allele association and QTL detection for candidate gene identification[J].BMC Genom,2014,15(1):464. DOI:10.1186/1471-2164-15-464. |
155 | RAWAT A,BARTHWAL S,GINWAL H S.Association mapping for resin yield in Pinus roxburghii Sarg.using microsatellite markers[J].Silvae Genet,2014,63(1/2/3/4/5/6):253-266. DOI:10.1515/sg-2014-0033. |
156 | WESTBROOK J W,WALKER A R,NEVES L G,et al.Discovering candidate genes that regulate resin canal number in Pinus taeda stems by integrating genetic analysis across environments,ages,and populations[J].New Phytol,2015,205(2):627-641. DOI:10.1111/nph.13074. |
157 | ECKERT A J,WEGRZYN J L,CUMBIE W P,et al.Association genetics of the loblolly pine (Pinus taeda,Pinaceae) metabolome[J].New Phytol,2012,193(4):890-902. DOI:10.1111/j.1469-8137.2011.03976.x. |
158 | LU M M,SEEVE C M,LOOPSTRA C A,et al.Exploring the genetic basis of gene transcript abundance and metabolite levels in loblolly pine (Pinus taeda L.) using association mapping and network construction[J].BMC Genet,2018,19(1):1-13. DOI:10.1186/s12863-018-0687-7. |
159 | AVIA K,KÄRKKÄINEN K,LAGERCRANTZ U,et al.Association of FLOWERING LOCUS T/TERMINAL FLOWER 1⁃like gene FTL2 expression with growth rhythm in Scots pine (Pinus sylvestris)[J].New Phytol,2014,204(1):159-170. DOI:10.1111/nph.12901. |
160 | PICULELL B J,JOSÉ MARTÍNEZ⁃GARCÍA P,NELSON C D,et al.Association mapping of ectomycorrhizal traits in loblolly pine (Pinus taeda L.)[J].Mol Ecol,2019,28(8):2088-2099. DOI:10.1111/mec.15013. |
161 | PORTH I,HAMBERGER B,WHITE R,et al.Defense mechanisms against herbivory in Picea:sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway[J].BMC Genom,2011,12(1):1-26. DOI:10.1186/1471-2164-12-608. |
162 | PORTH I,WHITE R,JAQUISH B,et al.Partial correlation analysis of transcriptomes helps detangle the growth and defense network in spruce[EB/OL].bioRxiv,2018, DOI:10.1101/247981. |
163 | LAMARA M,PARENT G J,GIGUÈRE I,et al.Association genetics of acetophenone defence against spruce budworm in mature white spruce[J].BMC Plant Biol,2018,18(1):1-15. DOI:10.1186/s12870-018-1434-y. |
164 | PELGAS B,BOUSQUET J,MEIRMANS P G,et al.QTL mapping in white spruce:gene maps and genomic regions underlying adaptive traits across pedigrees,years and environments[J].BMC Genom,2011,12(1):1-23. DOI:10.1186/1471-2164-12-145. |
165 | PRUNIER J,PELGAS B,GAGNON F,et al.The genomic architecture and association genetics of adaptive characters using a candidate SNP approach in boreal black spruce[J].BMC Genom,2013,14(1):1-16. DOI:10.1186/1471-2164-14-368. |
166 | FUENTES-UTRILLA P,GOSWAMI C,COTTRELL J E,et al.QTL analysis and genomic selection using RADseq derived markers in Sitka spruce:the potential utility of within family data[J].Tree Genet Genomes,2017,13(2):1-12. DOI:10.1007/s11295-017-1118-z. |
167 | PRUNIER J,CARON S,LAMOTHE M,et al.Gene copy number variations in adaptive evolution:The genomic distribution of gene copy number variations revealed by genetic mapping and their adaptive role in an undomesticated species,white spruce (Picea glauca)[J].Mol Ecol,2017,26(21):5989-6001. DOI:10.1111/mec.14337. |
168 | BEAULIEU J,DOERKSEN T,BOYLE B,et al.Association genetics of wood physical traits in the conifer white spruce and relationships with gene expression[J].Genetics,2011,188(1):197-214. DOI:10.1534/genetics.110.125781. |
169 | LAMARA M,RAHERISON E,LENZ P,et al.Genetic architecture of wood properties based on association analysis and co⁃expression networks in white spruce[J].New Phytol,2016,210(1):240-255. DOI:10.1111/nph.13762. |
170 | GANTHALER A,STÖGGL W,MAYR S,et al.Association genetics of phenolic needle compounds in Norway spruce with variable susceptibility to needle bladder rust[J].Plant Mol Biol,2017,94(3):229-251. DOI:10.1007/s11103-017-0589-5. |
171 | MUKRIMIN M,KOVALCHUK A,NEVES L G,et al.Genome⁃wide exon⁃capture approach identifies genetic variants of Norway spruce genes associated with susceptibility to Heterobasidion parviporum infection[J].Front Plant Sci,2018,9:793. DOI:10.3389/fpls.2018.00793. |
172 | ELFSTRAND M,BAISON J,LUNDÉN K,et al.Association genetics identifies a specifically regulated Norway spruce laccase gene,PaLAC5,linked to Heterobasidion parviporum resistance[J].Plant Cell Environ,2020,43(7):1779-1791. DOI:10.1111/pce.13768. |
173 | CARLSON C H,GOUKER F E,CROWELL C R,et al.Joint linkage and association mapping of complex traits in shrub willow (Salix purpurea L.)[J].Ann Bot,2019,124(4):701-715. DOI:10.1093/aob/mcz047. |
174 | BERLIN S,HALLINGBÄCK H R,BEYER F,et al.Genetics of phenotypic plasticity and biomass traits in hybrid willows across contrasting environments and years[J].Ann Bot,2017,120(1):87-100. DOI:10.1093/aob/mcx029. |
175 | HALLINGBÄCK H R,BERLIN S,NORDH N E,et al.Genome wide associations of growth,phenology,and plasticity traits in willow Salix viminalis (L.)[J].Front Plant Sci,2019,10:753. DOI:10.3389/fpls.2019.00753. |
176 | LI W,WU H T,LI X P,et al.Fine mapping of the sex locus in Salix triandra confirms a consistent sex determination mechanism in genus Salix[J].Hortic Res,,7(1):64. DOI:10.1038/s41438-020-0289-1. |
177 | BARTHOLOMÉ J,BRACHI B,MARÇAIS B,et al.The genetics of exapted resistance to two exotic pathogens in pedunculate oak[J].New Phytol,2020,226(4):1088-1103. DOI:10.1111/nph.16319. |
178 | GAILING O,BODÉNÈS C,FINKELDEY R,et al.Genetic mapping of EST⁃derived simple sequence repeats (EST⁃SSRs) to identify QTL for leaf morphological characters in a Quercus robur full⁃sib family[J].Tree Genet Genomes,2013,9(5):1361-1367. DOI:10.1007/s11295-013-0633-9. |
179 | MORI H,UENO S,UJINO-IHARA T,et al.Mapping quantitative trait loci for growth and wood property traits in Cryptomeria japonica across multiple environments[J].Tree Genet Genomes,2019,15(3):1-15. DOI:10.1007/s11295-019-1346-5. |
180 | MORIGUCHI Y,UENO S,SAITO M,et al.A simple allele specific PCR marker for identifying male⁃sterile trees:Towards DNA marker⁃assisted selection in the Cryptomeria japonica breeding program[J].Tree Genet Genomes,2014,10(4):1069-1077. DOI:10.1007/s11295-014-0743-z. |
181 | LU N,ZHANG M M,XIAO Y,et al.Construction of a high-density genetic map and QTL mapping of leaf traits and plant growth in an interspecific F1 population of Catalpa bungei ×;Catalpa duclouxii Dode[J].BMC Plant Biol,2019,19(1):596. DOI:10.1186/s12870-019-2207-y. |
182 | VAISHNAV V,ANSARI S A.Detection of QTL (quantitative trait loci) associated with wood density by evaluating genetic structure and linkage disequilibrium of teak[J].J For Res,2019,30(6):2247-2258. DOI:10.1007/s11676-018-0751-1. |
183 | HEER K,BEHRINGER D,PIERMATTEI A,et al.Linking dendroecology and association genetics in natural populations:Stress responses archived in tree rings associate with SNP genotypes in silver fir (Abies alba Mill.)[J].Mol Ecol,2018,27(6):1428-1438. DOI:10.1111/mec.14538. |
184 | DU Q Z,LU W J,QUAN M Y,et al.Genome⁃wide association studies to improve wood properties:challenges and prospects[J].Front Plant Sci,2018,9:1912. DOI:10.3389/fpls.2018.01912. |
185 | SUONTAMA M,KLÁPŠTĚ J,TELFER E,et al.Efficiency of genomic prediction across two Eucalyptus nitens seed orchards with different selection histories[J].Heredity,2019,122(3):370. DOI:10.1038/s41437-018-0119-5. |
186 | KLÁPŠTĚ J,SUONTAMA M,DUNGEY H S,et al.Effect of hidden relatedness on single⁃step genetic evaluation in an advanced open⁃pollinated breeding program[J].J Hered,2018,109(7):802-810. DOI:10.1093/jhered/esy051. |
187 | ALVES R S,JOÃO ROMERO DO AMARAL SANTOS ROCHA,TEODORO P E,et al.Multiple⁃trait BLUP:a suitable strategy for genetic selection of Eucalyptus[J].Tree Genet Genomes,2018,14(5):1-8. DOI:10.1007/s11295-018-1292-7. |
188 | CAPPA E P,DE LIMA B M,BDAJr SILVA⁃ O ,et al.Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non⁃genotyped trees by single⁃step GBLUP[J].Plant Sci,2019,284:9-15. DOI:10.1016/j.plantsci.2019.03.017. |
189 | BOUVET J M,MAKOUANZI EKOMONO C G,BRENDEL O,et al.Selecting for water use efficiency,wood chemical traits and biomass with genomic selection in a Eucalyptus breeding program[J].For Ecol Manag,2020,465:118092. DOI:10.1016/j.foreco.2020.118092. |
190 | LI Y J,KLÁPŠTĚ J,TELFER E,et al.Genomic selection for non⁃key traits in radiata pine when the documented pedigree is corrected using DNA marker information[J].BMC Genom,2019,20(1):1026. DOI:10.1186/s12864-019-6420-8. |
191 | UKRAINETZ N K,MANSFIELD S D.Assessing the sensitivities of genomic selection for growth and wood quality traits in lodgepole pine using Bayesian models[J].Tree Genet Genomes,2019,16(1):1-19. DOI:10.1007/s11295-019-1404-z. |
192 | CHEN Z Q,BAISON J,PAN J,et al.Increased prediction ability in Norway spruce trials using a marker x environment interaction and non⁃additive genomic selection model[EB/OL].bioRxiv,2018, DOI:10.1101/478404. |
193 | LENZ P R N,NADEAU S,AZAIEZ A,et al.Genomic prediction for hastening and improving efficiency of forward selection in conifer polycross mating designs:an example from white spruce[J].Heredity,2020,124(4):562. DOI:10.1038/s41437-019-0290-3. |
194 | CHAMBERLAND V,ROBICHAUD F,PERRON M,et al.Conventional versus genomic selection for white spruce improvement:a comparison of costs and benefits of plantations on Quebec public lands[J].Tree Genet Genomes,2020,16(1):1-16. DOI:10.1007/s11295-019-1409-7. |
195 | THISTLETHWAITE F R,RATCLIFFE B,KLÁPŠTĚ J,et al.Genomic selection of juvenile height across a single⁃generational gap in Douglas⁃fir[J].Heredity,2019,122(6):848. DOI:10.1038/s41437-018-0172-0. |
196 | HA J,SHIM S,LEE T,et al.Genome sequence of Jatropha curcas L.,a non-edible biodiesel plant,provides a resource to improve seed-related traits[J].Plant Biotechnol J,2019,17(2):517-530. DOI:10.1111/pbi.12995. |
197 | TRAN H T M,RAMARAJ T,FURTADO A,et al.Use of a draft genome of coffee (Coffea arabica) to identify SNPs associated with caffeine content[J].Plant Biotechnol J,2018,16(10):1756-1766. DOI:10.1111/pbi.12912. |
198 | WU P Z,ZHOU C P,CHENG S F,et al.Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.),a biodiesel plant[J].Plant J,2015,81(5):810-821. DOI:10.1111/tpj.12761. |
199 | CHEN J,HAO Z,GUANG X M,et al.Liriodendron genome sheds light on angiosperm phylogeny and species–pair differentiation[J].Nat Plants,2019,5(1):18. DOI:10.1038/s41477-018-0323-6. |
200 | CHEN Y C,LI Z,ZHAO Y X,et al.The Litsea genome and the evolution of the laurel family[J].Nat Commun,2020,11:1675. DOI:10.1038/s41467-020-15493-5. |
201 | ZHANG B Y,ZHU W X,DIAO S,et al.The poplar pangenome provides insights into the evolutionary history of the genus[J].Commun Biol,,2(1):215. DOI:10.1038/s42003-019-0474-7. |
202 | KUZMIN D A,FERANCHUK S I,SHAROV V V,et al.Stepwise large genome assembly approach:a case of Siberian larch (Larix sibirica Ledeb)[J].BMC Bioinform,2019,20(1):35-46. DOI:10.1186/s12859-018-2570-y. |
203 | ZHANG J,XIE M,TUSKAN G A,et al.Recent advances in the transcriptional regulation of secondary cell wall biosynthesis in the woody plants[J].Front Plant Sci,2018,9:1535. DOI:10.3389/fpls.2018.01535. |
204 | NAGLE M,DÉJARDIN A,PILATE G,et al.Corrigendum:opportunities for innovation in genetic transformation of forest trees[J].Front Plant Sci,2018,9:1443. DOI:10.3389/fpls.2018.01443. |
205 | CHANG S J,MAHON E L,MACKAY H A,et al.Genetic engineering of trees:progress and new horizons[J].Vitro Cell Dev Biol⁃Plant,2018,54(4):341-376. DOI:10.1007/s11627-018-9914-1. |
206 | CHANOCA A,DE VRIES L,BOERJAN W.Lignin engineering in forest trees[J].Front Plant Sci,2019,10:912. DOI:10.3389/fpls.2019.00912. |
207 | BEWG W P,CI D,TSAI C J.Genome editing in trees:from multiple repair pathways to long⁃term stability[J].Front Plant Sci,2018,9:1732. DOI:10.3389/fpls.2018.01732. |
208 | HESLOT N,JANNINK J L,SORRELLS M E.Perspectives for genomic selection applications and research in plants[J].Crop Sci,2015,55(1):1-12. DOI:10.2135/cropsci2014.03.0249. |
209 | ZHANG X H,HUANG C L,WU D,et al.High⁃throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth[J].Plant Physiol,2017,173(3):1554-1564. DOI:10.1104/pp.16.01516. |
210 | MAZIS A,CHOUDHURY S D,MORGAN P B,et al.Application of high-throughput plant phenotyping for assessing biophysical traits and drought response in two oak species under controlled environment[J].For Ecol Manag,2020,465:118101. DOI:10.1016/j.foreco.2020.118101. |
211 | DUNGEY H S,DASH J P,PONT D,et al.Phenotyping whole forests will help to track genetic performance[J].Trends Plant Sci,2018,23(10):854-864. DOI:10.1016/j.tplants. 2018.08.005. |
212 | DANILEVICZ M F,GTAY FERNANDEZ C,MARSH J I,et al.Plant pangenomics:approaches,applications and advancements[J].Curr Opin Plant Biol,2020,54:18-25. DOI:10.1016/j.pbi.2019.12.005. |
213 | LU F,ROMAY M C,GLAUBITZ J C,et al.High⁃resolution genetic mapping of maize pan⁃genome sequence anchors[J].Nat Commun,,6(1):6914. DOI:10.1038/ncomms7914. |
214 | EATHINGTON S R, CROSBIE T M, EDWARDS M D, et al. Molecular markers in a commercial breeding program [J]. Crop Science, 2007, 47(S3): S154–S163. DOI:10.2135/cropsci2007.04.0015IPBS. |
[1] | 杨永. 裸子植物的系统分类:历史、现状和展望[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 14-26. |
[2] | 方炎明, 朱福远, 李垚, 李璇. 基于基因组学的栎树生物学研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 64-72. |
[3] | 陈赢男, 韦素云, 曲冠正, 胡建军, 王军辉, 尹佟明, 潘惠新, 卢孟柱, 康向阳, 李来庚, 黄敏仁, 王明庥. 现代林木育种关键核心技术研究现状与展望[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 1-9. |
[4] | 王子玥, 甄艳, 刘光欣, 席梦利. 染色质转座酶可及性测序及其在木本植物中的应用前景[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 1-10. |
[5] | 丁晓磊, 张悦, 林司曦, 叶建仁. 基于高通量测序技术的松材线虫研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 1-7. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||