南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (6): 55-62.doi: 10.3969/j.issn.1000-2006.201903015
收稿日期:
2019-03-05
修回日期:
2019-04-26
出版日期:
2020-11-30
发布日期:
2020-12-07
通讯作者:
徐小牛
基金资助:
ZHAO Xiaoya(), GUAN Mengran, SUN Mengyao, WANG Zefu, XU Xiaoniu*()
Received:
2019-03-05
Revised:
2019-04-26
Online:
2020-11-30
Published:
2020-12-07
Contact:
XU Xiaoniu
摘要:
【目的】凋落物是森林净生产量的重要组分,探讨森林凋落物生产及其养分归还量对氮磷添加的响应,为亚热带常绿阔叶林可持续经营提供科学依据。【方法】选择安徽池州亚热带常绿阔叶林,包括甜槠(Castanopsis eyrei)老龄林和苦槠(C. sclerophylla)中龄林,开展氮磷添加试验,设置3个处理,即氮[N 100 kg /(hm2·a)]、氮+磷[N 100 kg /(hm2·a) +P 50 kg /(hm2·a)]和对照(CK,无氮磷添加)。采用凋落物收集框法,对林分凋落物生产量及其养分归还量进行了为期1年的监测(2017年5月至2018年4月)。【结果】N+P处理下,苦槠林和甜槠林总凋落物量最高值分别为9.502、7.120 t/(hm2·a);其次是N处理,分别为8.393、7.041 t/(hm2·a);CK林分分别为7.724和6.697 t/(hm2·a),氮磷添加提高了总凋落物量,但不同处理间没有显著差异。在N处理和对照条件下,两林分凋落物各组分所占比例由大到小顺序均为:落叶、落枝、碎屑、落花落果。但在N+P处理的苦槠林中由大到小依次为:落叶、落枝、落花落果、碎屑。N处理下,苦槠林和甜槠林凋落物年均氮含量分别为14.199和13.648 g/kg,N+P处理分别为13.863和13.650 g/kg,CK林分分别为13.384和13.094 g/kg。各处理下苦槠林和甜槠林凋落物年均磷含量由大到小顺序为N+P、CK、N处理。两林分凋落物的氮磷含量和年归还量不同处理间差异均不显著;不同处理间的苦槠林和甜槠林凋落物的氮磷比均无明显差异。【结论】氮沉降提高了苦槠和甜槠林凋落物产量,磷添加具有一定的增效作用,表明磷添加缓解了氮沉降引起的磷限制作用。
中图分类号:
赵晓雅,关梦冉,孙孟瑶,等. 氮磷添加对亚热带常绿阔叶林凋落物产量及其养分含量的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 55-62.
ZHAO Xiaoya, GUAN Mengran, SUN Mengyao, WANG Zefu, XU Xiaoniu. Effects of nitrogen and phosphorus additions on litterfall production and nutrient dynamics in evergreen broad-leaved forests[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(6): 55-62.DOI: 10.3969/j.issn.1000-2006.201903015.
表1
试验林分结构及表层土壤特性"
处理 treatment | 甜槠林 Castanopsis eyrei stand | 苦槠林 Castanopsis sclerophylla stand | |||||
---|---|---|---|---|---|---|---|
密度/ (株·hm-2) density | 胸高断面积/ (m2 ·hm-2) basal area | 平均胸径/ cm mean DBH | 密度/ (株·hm-2) density | 胸高断面积/ (m2 ·hm-2) basal area | 平均胸径/ cm mean DBH | ||
N+P | 1 210 | 36.9±4.8 | 15.8±0.8 | 922 | 22.8±5.6 | 17.8±0.9 | |
N | 1 191 | 32.6±1.6 | 14.7±1.3 | 956 | 20.6±1.6 | 16.7±1.2 | |
CK | 1 316 | 33.5±4.7 | 14.2±1.6 | 800 | 17.3±5.5 | 16.6±1.3 |
表2
不同处理下苦槠林凋落物及其组分年生产量"
处理 treatment | 凋落物组分生产量 productions of litterfall components | |||||
---|---|---|---|---|---|---|
落枝 twigs litter | 凋落叶 leaf litter | 花果 flowers and fruits | 碎屑 miscellaneous | 合计 total | ||
N+P | 2.051±0.171 a (21.6) | 5.119±0.220 a (53.9) | 1.505±0.147 a (15.8) | 0.827±0.015 a (8.7) | 9.502±0.276 a | |
N | 1.865±0.188 ab (22.2) | 4.650±0.565 a (55.4) | 0.852±0.214 a (10.2) | 1.026±0.223 a (12.2) | 8.393±0.844 a | |
CK | 1.606±0.080 b (20.8) | 4.230±0.706 a (54.8) | 0.873±0.122 a (11.3) | 1.015±0.227 a (13.1) | 7.724±0.924 a |
表3
不同处理甜槠林凋落物及其组分年生产量"
处理 treatment | 凋落物组分生产量 productions of litterfall components | |||||
---|---|---|---|---|---|---|
落枝 twigs | 凋落叶 leaf litter | 花果 flowers and fruits | 碎屑 miscellaneous | 合计 total | ||
N+P | 1.496±0.059 a (21.0) | 4.857±0.157 a (68.2) | 0.206±0.040 a (2.9) | 0.561±0.042 a (7.9) | 7.120±0.842 a | |
N | 1.210±0.034 b (17.2) | 4.920±0.697 a (69.9) | 0.192±0.099 a (2.7) | 0.716±0.246 a (10.2) | 7.041±0.048 a | |
CK | 1.105±0.172 b (16.5) | 4.557±0.568 a (68.0) | 0.232±0.060 a (3.5) | 0.803±0.262 a (12.0) | 6.697±0.693 a |
表4
不同处理凋落物及其组分的年平均养分含量及养分年归还量"
样地 plot | 指标 index | 处理 treatment | 落枝 twigs litter | 落叶 leaf litter | 果实 fruits | 花 flower | 碎屑 miscellaneous | 总凋落物 litterfall |
---|---|---|---|---|---|---|---|---|
CS | NC | N+P | 9.338±0.179 b | 14.518±0.712 a | 8.718±0.578 a | 18.880±3.659 a | 21.800±0.274 a | 13.863±0.153 a |
N | 10.271±0.464 a | 14.567±0.601 a | 8.330±0.141 ab | 16.677±4.975 a | 22.821±0.554 a | 14.199±0.648 a | ||
CK | 9.653±0.335 ab | 13.311±0.172 b | 7.472±0.258 b | 20.547±0.897 a | 22.065±0.569 a | 13.384±0.137a | ||
PC | N+P | 0.569±0.028 a | 0.695±0.079 a | 0.708±0.059 a | 1.803±0.067 a | 1.719±0.028 a | 0.841±0.033 a | |
N | 0.770±0.319 a | 0.455±0.125 a | 0.573±0.081 ab | 1.221±0.140 b | 1.015±0.108 b | 0.621±0.035 a | ||
CK | 0.662±0.369 a | 0.724±0.274 a | 0.546±0.019 b | 1.134±0.124 b | 1.105±0.040 b | 0.759±0.190 a | ||
NR | N+P | 19.184±1.989 a | 74.173±0.1.098 a | 7.048±1.189 a | 13.261±2.905 a | 18.032±0.560 a | 131.697±2.669 a | |
N | 19.135±2.011 a | 67.661±7.778 a | 5.312±1.944 a | 3.708±1.425 b | 23.398±4.855 a | 119.214±13.883 a | ||
CK | 15.495±0.811 a | 56.310±9.505 a | 4.899±0.553 a | 4.500±1.265 b | 22.296±4.478 a | 103.500±13.468 a | ||
PR | N+P | 1.168±0.118 a | 3.568±0.527 a | 0.576±0.116 a | 1.260±0.067 a | 1.421±0.036 a | 7.994±0.474 a | |
N | 1.378±0.426 a | 2.186±0.873 a | 0.349±0.092 b | 0.269±0.075 b | 1.061±0.320 a | 5.242±0.842 a | ||
CK | 1.053±0.560 a | 0.733±0.364 a | 0.358±0.041 b | 0.253±0.085 b | 1.121±0.249 a | 6.042±2.056 a | ||
CE | NC | N+P | 11.455±0.389 a | 13.683±0.401 a | 5.303±3.755 a | 18.278±5.526 a | 19.974±0.238 a | 13.650±0.509 a |
N | 10.253±0.712 a | 13.816±0.309 a | 3.093±4.375 a | 21.910±1.372 a | 19.046±0.603 a | 13.648±0.112 a | ||
CK | 11.156±0.754 a | 12.734±0.626 a | 8.887±1.441 a | 21.620±0.371 a | 17.974±1.161 a | 13.094±0.421 a | ||
PC | N+P | 0.452±0.056 a | 0.392±0.013 a | 0.310±0.227 a | 1.199±0.076 a | 1.148±0.017 a | 0.471±0.028 a | |
N | 0.307±0.026 b | 0.420±0.054 a | 0.143±0.202 a | 1.009±0.022 b | 1.037±0.081 a | 0.449±0.040 a | ||
CK | 0.331±0.055 b | 0.395±0.059 a | 0.783±0.388 a | 1.176±0.075 a | 1.011±0.130 a | 0.459±0.042 a | ||
NR | N+P | 17.127±0.780 a | 66.483±3.437 a | 0.162±0.115 a | 3.387±0.654 a | 7.915±0.594 a | 95.074±4.164 a | |
N | 12.415±1.058 b | 68.211±11.015 a | 0.389±0.551 a | 3.289±1.352 a | 7.500±0.733 a | 91.804±11.750 a | ||
CK | 12.194±1.201 b | 58.389±10.224 a | 0.622±0.385 a | 3.578±1.548 a | 9.797±0.741 a | 84.579±11.779 a | ||
PR | N+P | 0.679±0.106 a | 1.904±0.020 a | 0.009±0.007 a | 0.234±0.044 a | 0.455±0.038 a | 3.281±0.171 a | |
N | 0.372±0.041 b | 2.039±0.160 a | 0.018±0.025 a | 0.152±0.062 a | 0.407±0.041 a | 2.988±0.190 a | ||
CK | 0.356±0.020 b | 1.810±0.384 a | 0.040±0.015 a | 0.197±0.087 a | 0.546±0.020 a | 2.949±0.363 a |
[1] | TRESEDER K K, VITOUSEK P M. Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests[J]. Ecology, 2001,82(4):946-954. DOI: 10.1890/0012-9658(2001)082[0946:EOSNAO]2.0.CO;2. |
[2] |
ELSER J J, BRACKEN M E, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecol Lett, 2007,10(12):1135-1142. DOI: 10.1111/j.1461-0248.2007.01113.x.
pmid: 17922835 |
[3] | 韩斌, 孔继君, 邹晓明, 等. 生物固氮研究现状及展望[J]. 山西农业科学, 2009,37(10):86-89, 85. |
HAN B, KONG J J, ZOU X M, et al. The evolvement and expectation of biological bitrogen fixation[J]. J Shanxi Agric Sci, 2009,37(10):86-89, 85. DOI: 10.3969/j.issn.1002-2481.2009.10.023. | |
[4] | 杨晓霞, 任飞, 周华坤, 等. 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应[J]. 植物生态学报, 2014,38(2):159-166. |
YANG X X, REN F, ZHOU H K, et al. Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau[J]. Chin J Plant Ecol, 2014,38(2):159-166. DOI: 10.3724/SP.J.1258.2014.00014. | |
[5] | 王志勇. 测土配方施肥理论与实践[M]. 郑州: 黄河水利出版社, 2010: 5-10. |
WANG Z Y. Theory and practice of soil testing and formula fertilization[M]. Zhengzhou: The Yellow River Water Conservancy Press, 2010: 5-10. | |
[6] | 向元彬, 黄从德, 胡庭兴, 等. 不同密度巨桉人工林凋落物分解过程中基质质量的变化[J]. 西北农林科技大学学报(自然科学版), 2015,43(4):65-72. |
XIANG Y B, HUANG C D, HU T X, et al. Changes in masses of substrates during litter decomposition in Eucalyptus grandis plantations with different densities[J]. J Northwest A & F Univ (Nat Sci Ed), 2015,43(4):65-72. DOI: 10.13207/j.cnki.jnwafu.2015.04.006. | |
[7] | CHAPIN F S, MATSON P A, MOONEY H A. Principles of terrestrial ecosystem ecology[M]. New York: Springer, 2002. DOI: 10.1007/b97397. |
[8] | ZHOU G Y, GUAN L L, WEI X H, et al. Litterfall production along successional and altitudinal gradients of subtropical monsoon evergreen broadleaved forests in Guangdong, China[J]. Plant Ecol, 2007,188(1):77-89. DOI: 10.1007/s11258-006-9149-9. |
[9] | MILLER H G, COOPER J M, MILLER J D, et al. Nutrient cycles in pine and their adaptation to poor soils[J]. Canadian Journal of Forest Research, 1979,9(1):19-26. DOI: 10.1139/x79-004. |
[10] | ABER J D, NADELHOFFER K J, STEUDLER P, et al. Nitrogen saturation in northern forest ecosystems: excess nitrogen from fossil fuel combustion may stress the biosphere[J]. Bioscience, 1989,39(6):378-386. |
[11] | MAGILL A H, ABER J D, BERNTSON G M, et al. Long-term nitrogen additions and nitrogen saturation in two temperate forests[J]. Ecosystems, 2000,3(3):238-253. DOI: 10.1007/s100210000023. |
[12] | 吕妍, 郑泽梅, 美丽班·马木提, 等. 增施氮磷肥对木荷林凋落物生产量及其养分的影响[J]. 应用生态学报, 2013,24(11):3027-3034. |
LV Y, ZHENG Z M, MLB·MAMUTI , et al. Effects of nitrogen and phosphorus fertilization on litterfall production and nutrient dynamics in a Schima superba forest in Zhejiang Province of east China[J]. Chin J of Appl Ecol, 2013,24(11):3027-3034. DOI: 10.13287/j.1001-9332.2013.0524. | |
[13] | ABER J D, MCDOWELL W, NADELHOFFER K, et al. Nitrogen saturation in temperate forest ecosystems hypotheses revisited[J]. BioScience, 1998,48(11):921-934. DOI: 10.2307/1313296. |
[14] | 官丽莉, 周国逸, 张德强, 等. 鼎湖山南亚热带常绿阔叶林凋落物量20a动态研究[J]. 植物生态学报, 2004,28(4):445-456. |
GUAN L L, ZHOU G Y, ZHANG D Q, et al. Twenty years of litter-fall dynamics in subtropical evergreen broad-leaved forests at the Dinghushan Forest Ecosystem Research Station[J]. Acta Phytoecol Sin, 2004,28(4):445-456. DOI: 10.17521/cjpe.2004.0062. | |
[15] | 屠梦照, 姚文华, 翁轰, 等. 鼎湖山南亚热带常绿阔叶林凋落物的特征[J]. 土壤学报, 1993,30(1):34-42. |
TU M Z, YAO W H, WENG H, et al. Characteristics of litter in evergreen broadleaved forest of the Dinghu Mountain[J]. Acta Pedol Sin, 1993,30(1):34-42. | |
[16] | 张德强, 叶万辉, 余清发, 等. 鼎湖山演替系列中代表性森林调落物研究[J]. 生态学报, 2000,20(6):938-944. |
ZHANG D Q, YE W H, YU Q F, et al. The litter-fall of representative forests of successional series in Dinghushan[J]. Acta Ecol Sin, 2000,20(6):938-944. DOI: 10.3321/j.issn:1000-0933.2000.06.006. | |
[17] | 张磊, 王晓荷, 米湘成, 等. 古田山常绿阔叶林凋落量时间动态及冰雪灾害的影响[J]. 生物多样性, 2011,19(2):206-214. |
ZHANG L, WANG X H, MI X C, et al. Temporal dynamics of and effects of an ice storm on litter production in an evergreen broad-leaved forest in Gutianshan National Nature Reserve[J]. Biodivers Sci, 2011,19(2):206-214. DOI: 10.3724/SP.J.1003.2011.10237. | |
[18] | 马祥庆, 刘爱琴, 何智英, 等. 杉木幼林生态系统凋落物及其分解作用研究[J]. 植物生态学报, 1997,21(6):564-570. |
MA X Q, LIU A Q, HE Z Y, et al. The litter and its decomposition in young Chinese fir plantation ecosystem[J]. Acta Phytoecol Sin, 1997,21(6):564-570. | |
[19] | 徐国良, 黄忠良, 欧阳学军, 等. 鼎湖山地表无脊椎动物多样性及其与凋落物的关系[J]. 动物学研究, 2002,23(6):477-482. |
XU G L, HUANG Z L, OUYANG X J, et al. Diversity of aboveground invertebrates in Dinghushan and its correlation with litter[J]. Zool Res, 2002,23(6):477-482. DOI: 10.3321/j.issn:0254-5853.2002.06.006. | |
[20] | 罗永清, 赵学勇, 丁杰萍, 等. 科尔沁沙地不同类型沙地植被恢复过程中地上生物量与凋落物量变化[J]. 中国沙漠, 2016,36(1):78-84. |
LUO Y Q, ZHAO X Y, DING J P, et al. Dynamics of aboveground biomass and litters in different types of dunes under vegetation restoration processes in the Horqin sandy land[J]. J Desert Res, 2016,36(1):78-84. DOI: 10.7522/j.issn.1000-694X.2015.00027. | |
[21] | XU X N, HIRATA E, SHIBATA H. Effect of typhoon disturbance on fine litterfall and related nutrient input in a subtropical forest on Okinawa Island, Japan[J]. Basic Appl Ecol, 2004,5(3):271-282. DOI: 10.1016/j.baae.2004.01.001. |
[22] | KOZOVITS A R, BUSTAMANTE M M C, GAROFALO C R, et al. Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna[J]. Funct Ecol, 2007,21(6):1034-1043. DOI: 10.1111/j.1365-2435.2007.01325.x. |
[23] | EMMETT B A. Nitrogen saturation of terrestrial ecosystems: some recent findings and their implications for our conceptual framework[J]. Water Air Soil Pollut: Focus, 2007,7(1/2/3):99-109. DOI: 10.1007/s11267-006-9103-9. |
[24] | 王陆军, 张赟齐. 安徽肖坑亚热带常绿阔叶林4优势树种叶养分动态及其利用效率[J]. 东北林业大学学报, 2010,38(7):10-12. |
WANG L J, ZHANG Y Q. Foliar nutrient dynamics and nutrient use efficiency of four dominant tree species in a subtropical evergreen broad-leaved forest in Xiaokeng, southern Anhui[J]. J Northeast For Univ, 2010,38(7):10-12. DOI: 10.3969/j.issn.1000-5382.2010.07.004. | |
[25] | PALMA R M, DEFRIERI R L, TORTAROLO M F, et al. Seasonal changes of bioelements in the litter and their potential return to green leaves in four species of the Argentine subtropical forest[J]. Ann Bot, 2002,85(2):181-186. DOI: 10.1006/anbo.1999.1005. |
[26] | ZIMMERMANN S, BRAUN S, CONEDERA M, et al. Macronutrient inputs by litterfall as opposed to atmospheric deposition into two contrasting chestnut forest stands in southern Switzerland[J]. For Ecol Manag, 2002,161(1/2/3):289-302. DOI: 10.1016/S0378-1127(01)00477-7. |
[27] | 刘文飞, 樊后保, 袁颖红, 等. 氮沉降对杉木人工林凋落物大量元素归还量的影响[J]. 水土保持学报, 2011,25(1):137-141. |
LIU W F, FAN H B, YUAN Y H, et al. Macronutrient fluxes of the litterfall in Chinese fir plantation in response to simulated nitrogen deposition[J]. J Soil Water Conserv, 2011,25(1):137-141. DOI: 10.13870/j.cnki.stbcxb.2011.01.050. | |
[28] | 袁颖红, 樊后保, 王强, 等. 模拟氮沉降对杉木人工林土壤有效养分的影响[J]. 浙江林学院学报, 2007,24(4):437-444. |
YUAN Y H, FAN H B, WANG Q, et al. Available nutrients with increased N deposition in soils of Cunninghamia lanceolata plantations[J]. J Zhejiang For Coll, 2007,24(4):437-444. DOI: 10.3969/j.issn.2095-0756.2007.04.011. | |
[29] | BERG B, MATZNER E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems[J]. Environ Rev, 1997,5(1):1-25. DOI: 10.1139/a96-017. |
[30] | LOCKABY B G, MURPHY A L, SOMERS G L. Hydroperiod influences on nutrient dynamics in decomposing litter of a floodplain forest[J]. Soil Sci Soc Am J, 1996,60(4):1267-1272. DOI: 10.2136/sssaj1996.03615995006000040044x. |
[31] | 张林, 李茂, 徐俊, 等. 模拟氮沉降对甜槠林分凋落物及主要养分归还量的影响[J]. 土壤通报, 2015,46(3):648-655. |
ZHANG L, LI M, XU J, et al. Effects of simulated nitrogen desposition precipitation on litterfall and related nutrient returns in a Castanopsis eyrei forest[J]. Chin J Soil Sci, 2015,46(3):648-655. DOI: 10.19336/j.cnki.trtb.2015.03.022. | |
[32] | 张新洁, 陆天宇, 孙海龙, 等. 氮磷添加对水曲柳化学计量特征和养分再吸收的影响[J]. 森林工程, 2019,35(5):16-21. |
ZHANG X J, LU T Y, SUN H L, et al. Effects of nitrogen and phosphorus addition on nutrient stoichiometry and resorption of Fraxinus mandshurica[J]. Forest Engineering, 2019,35(5):16-21.DOI: 10.16270/j.cnki.slgc.2019.05.003. | |
[33] | 张驰, 张林, 李鹏, 等. 亚热带常绿阔叶林凋落物生产及季节动态对模拟氮沉降增加的响应[J]. 生态学杂志, 2014,33(5):1205-1210. |
ZHANG C, ZHANG L, LI P, et al. Response of litter production and its seasonality to increased nitrogen deposition in a subtropical evergreen broad-leaved forest[J]. Chin J Ecol, 2014,33(5):1205-1210. DOI: 10.13292/j.1000-4890.20140327.064. | |
[34] | 施瑶, 王忠强, 张心昱, 等. 氮磷添加对内蒙古温带典型草原土壤微生物群落结构的影响[J]. 生态学报, 2014,34(17):4943-4949. |
SHI Y, WANG Z Q, ZHANG X Y, et al. Effects of nitrogen and phosphorus addition on soil microbial communitycomposition intemperate typical grassland in Inner Mongolia[J]. Acta Ecol Sin, 2014,34(17):4943-4949. DOI: 10.5846/stxb201306081430. |
[1] | 孙劲伟, 王圣燕, 范弟武, 朱咏莉. C源与NP添加对Cd胁迫下林地土壤呼吸作用的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 140-146. |
[2] | 董玉洁, 毛岭峰, 张敏, 鲁旭东, 吴秀萍. 华东地区亚热带典型常绿阔叶林地上生物量与环境因子的关系[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 74-80. |
[3] | 缪菁, 王勇, 王璐, 许晓岗. 基于MaxEnt模型的苦槠潜在地理分布格局变迁预测[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 193-198. |
[4] | 陈俊华, 周大松, 牛牧, 别鹏飞, 谢天资, 赵润, 慕长龙. 川中丘陵区4种乡土阔叶树细根性状对比研究[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 31-38. |
[5] | 许宝坤,许晓岗,李垚,李小东,陈水飞,丁晖,蒋晓辉,苟凌晨,方炎明. 黄山常绿阔叶林甜槠群落优势种种间关联分析[J]. 南京林业大学学报(自然科学版), 2019, 43(04): 77-84. |
[6] | 万盼,黄小辉,熊兴政,刘芸. 农药施用浓度对油桐幼苗生长及土壤酶活性、有效养分含量的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(01): 73-80. |
[7] | 周华,孟盛旺,刘琪璟. 亚热带常绿阔叶林幼树与灌木的地上生物量模型[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 79-86. |
[8] | 崔鸿侠,潘磊,黄志霖,曾立雄,王晓荣,庞宏东. 神农架巴山冷杉林凋落物量养分归还及分解特征[J]. 南京林业大学学报(自然科学版), 2017, 41(01): 194-198. |
[9] | 李静,王玲红,程栋梁,徐朝斌,张中瑞,吴永宏,钟全林. 不同龄组天然常绿阔叶林与杉木人工林林下草本层生物量分配特征[J]. 南京林业大学学报(自然科学版), 2016, 40(05): 170-176. |
[10] | 赵雨虹,范少辉,夏晨. 亚热带4种常绿阔叶林林分枯落物储量 及持水功能研究[J]. 南京林业大学学报(自然科学版), 2015, 39(06): 93-98. |
[11] | 柯立,崔珺,杨佳,徐小牛. 安徽石台亚热带常绿阔叶林植物叶中 C、N、P特征分析[J]. 南京林业大学学报(自然科学版), 2014, 38(06): 28-32. |
[12] | 王东光,尹光天,杨锦昌,李荣生,邹文涛,贾瑞丰. 磷肥对闽楠苗木生长及叶片氮磷钾浓度的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(03): 40-44. |
[13] | 吴红,韩大勇,张衡锋,汤庚国. 沼液施用量对园林树木生长和土壤养分含量影响[J]. 南京林业大学学报(自然科学版), 2013, 37(03): 77-81. |
[14] | 王剑敏,沈烈英,赵广琦*. 中亚热带优势灌木根系对土壤抗剪切力的影响[J]. 南京林业大学学报(自然科学版), 2011, 35(02): 47-50. |
[15] | 高俊香,鲁小珍*,马力,胡绍庆,周丽飞,马毅. 凤阳山常绿阔叶林乔木层优势种群生态位分析[J]. 南京林业大学学报(自然科学版), 2010, 34(04): 157-160. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||