南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (6): 71-78.doi: 10.3969/j.issn.1000-2006.201903034
收稿日期:
2019-03-13
修回日期:
2019-06-05
出版日期:
2020-11-30
发布日期:
2020-12-07
通讯作者:
尚鹤
基金资助:
YE Siyuan(), SHANG He*(), CHEN Zhan, CAO Jixin
Received:
2019-03-13
Revised:
2019-06-05
Online:
2020-11-30
Published:
2020-12-07
Contact:
SHANG He
摘要:
【目的】研究CO2浓度升高对马尾松(Pinus massoniana)幼苗光合特性和单萜烯释放的影响,以了解马尾松挥发性有机物(BVOCs)排放对气候变化的响应机制。【方法】利用开顶式气室(OTC),依据政府间气候变化专门委员会(IPCC)第5次评估报告,设置1 000、750、550 μmol/mol 3个CO2熏气浓度梯度,并与未经CO2熏气处理的OTCs中CO2平均浓度(437 μmol/mol,CK)进行对比,研究了中国南方主要造林树种马尾松幼苗净光合速率、叶绿素含量、气孔导度及单萜烯释放的变化规律。【结果】经过60 d的浓度为750及1 000 μmol/mol CO2熏气处理,马尾松幼苗的叶绿素总含量下降约 17.54%和29.82%;60 d高浓度CO2处理的马尾松幼苗在环境大气中净光合速率及气孔导度显著低于对照组,且浓度为1 000 μmol/mol CO2处理组最低;相较于对照组,CO2浓度升高使马尾松幼苗的单萜烯释放速率下降,在60 d时达到显著水平。马尾松幼苗的单萜烯释放速率与叶片净光合速率及气孔导度呈显著正相关。【结论】高CO2浓度条件下,马尾松幼苗叶片光合速率和气孔导度的下降可能是单萜烯释放速率降低的原因。
中图分类号:
叶思源,尚鹤,陈展,等. 不同浓度CO2对马尾松幼苗光合特性及单萜烯释放的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 71-78.
YE Siyuan, SHANG He, CHEN Zhan, CAO Jixin. Effects of elevated CO2 on photosynthetic characteristics and monoterpene emissions in Pinus massoniana seedlings[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(6): 71-78.DOI: 10.3969/j.issn.1000-2006.201903034.
表1
不同月份、不同CO2浓度条件下马尾松幼苗叶绿素含量"
CO2浓度/ (μmol·mol-1) CO2 concentration | 10月叶绿素含量/(mg·g-1) Chl contents during Oct. | 11月叶绿素含量/(mg·g-1) Chl contents during Nov. | |||||
---|---|---|---|---|---|---|---|
Chl a | Chl b | Chl | Chl a | Chl b | Chl | ||
437(CK) | 1.19±0.22 a | 0.56±0.12 a | 1.76±0.31 a | 1.28±0.14 a | 0.43±0.05 a | 1.71±0.19 a | |
550 | 1.23±0.23 a | 0.53±0.21 a | 1.76±0.29 a | 1.16±0.16 ab | 0.37±0.05 ab | 1.52±0.21 ab | |
750 | 1.20±0.27 a | 0.46±0.10 a | 1.66±0.37 a | 1.06±0.16 bc | 0.35±0.05 bc | 1.41±0.21 bc | |
1 000 | 1.10±0.19 a | 0.41±0.07 a | 1.51±0.26 a | 0.90±0.11 c | 0.30±0.04 c | 1.20±0.14 c |
[1] | WMO Greenhouse Gas Bulletin. The state of greenhouse gases in the atmosphere based on global observations through 2017 [R]. Genewa:World Meteorological Organization, 2018. |
[2] | IPCC. Climate Change 2014: Synreport report. Contribution of working groups Ⅰ, Ⅱ and Ⅲ to the fifth assessment Report of the intergovernmental panel on climate change[R]. Geneva, Switzerland: IPCC, 2014. |
[3] | 张振花, 孙胜, 刘洋, 等. 增施CO2对温室番茄结果期叶片光合特性的影响[J]. 生态学杂志, 2018,37(5):1398-1402. |
ZHANG Z H, SUN S, LIU Y, et al. Effects of CO2 enrichment on photosynthetic characteristics of greenhouse tomato during fruiting stage[J]. Chinese Journal of Ecology, 2018,37(5):1398-1402. DOI: 10.13292/j.1000-4890.201805.010. | |
[4] | 毛子军, 赵溪竹, 刘林馨, 等. 3种落叶松幼苗对CO2升高的光合生理响应[J]. 生态学报, 2010,30(2):317-323. |
MAO Z J, ZHAO X Z, LIU L X, et al. Photosynthetic physiological characteristics in response to elevated CO2 concentration of three larch (Larix) species seedlings[J]. Acta Ecologica Sinica, 2010,30(2):317-323. | |
[5] | 汤文华, 窦全琴, 潘平平, 等. 不同薄壳山核桃品种光合特性研究[J]. 南京林业大学学报(自然科学版), 2020,44(3):81-88. |
TANG W H, DOU Q Q, PAN P P, et al. Photosynthetic characteristics of grafted plants of different Carya illinoinensis varieties[J]. J Nanjing For Univ(Nat Sci Ed), 2020,44(3):81-88. DOI: 10.3969/j.issn.1000-2006.201903004. | |
[6] | 郑凤英, 彭少麟. 植物生理生态指标对大气CO2浓度倍增响应的整合分析[J]. 植物学报, 2001,43(11):1101-1109. |
ZHENG F Y, PENG S L. Meta-analysis of the response of plant ecophysiological variables to doubled atmospheric CO2 concentrations[J]. Acta Botanica Sinica, 2001,43(11):1101-1109. DOI: 10.3321/j.issn:1672-9072.2001.11.001. | |
[7] | GAMAGE D, THOMPSON M, SUTHERLAND M, et al. New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations[J]. Plant, Cell & Environment, 2018,41(6):1233-1246. DOI: 10.1111/pce.13206 |
[8] | PEÑUELAS J, LLUSIÀ J. Plant VOC emissions: making use of the unavoidable[J]. Trends in Ecology & Evolution, 2004,19(8):402-404. DOI: 10.1016/j.tree.2004.06.002. |
[9] | THEIS N, LERDAU M. The evolution of function in plant secondary metabolites[J]. International Journal of Plant Sciences, 2003,164(S3):S93-S102. DOI: 10.1086/374190. |
[10] | PEÑUELAS J, STAUDT M. BVOCs and global change[J]. Trends in Plant Science, 2010,15(3):133-144. DOI: 10.1016/j.tplants.2009.12.005. |
[11] | PACIFICO F, HARRISON S P, JONES C D, et al. Isoprene emissions and climate[J]. Atmospheric Environment, 2009,43(39):6121-6135. DOI: 10.1016/j.atmosenv.2009.09.002. |
[12] | HALLQUIST M, WENGER J C, BALTENSPERGER U, et al. The formation, properties and impact of secondary organic aerosol: current and emerging issues[J]. Atmospheric Chemistry and Physics, 2009,9(14):5155-5236. DOI: 10.5194/acp-9-5155-2009. |
[13] | GUENTHER A, HEWITT C N, ERICKSON D, et al. A global model of natural volatile organic compound emissions[J]. Journal of Geophysical Research, 1995,100(D5):8873-8892. DOI: 10.1029/94jd02950. |
[14] | HEYWORTH C J, IASON G R, TEMPERTON V, et al. The effect of elevated CO2 concentration and nutrient supply on carbon-based plant secondary metabolites in Pinus sylvestris L[J]. Oecologia, 1998,115(3):344-350. DOI: 10.1007/s004420050526. |
[15] | STAUDT M, JOFFRE R, RAMBAL S, et al. Effect of elevated CO2 on monoterpene emission of young Quercus ilex trees and its relation to structural and ecophysiological parameters[J]. Tree Physiology, 2001,21(7):437-445. DOI: 10.1093/treephys/21.7.437. |
[16] | LORETO F, FISCHBACH R J, SCHNITZLER J P, et al. Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations[J]. Global Change Biology, 2001,7(6):709-717. DOI: 10.1046/j.1354-1013.2001.00442.x. |
[17] | 花圣卓, 陈俊刚, 余新晓, 等. 温带典型森林树种的萜烯类化合物排放及其与环境要素的相关性[J]. 林业科学, 2016,52(11):19-28. |
HUA S Z, CHEN J G, YU X X, et al. Correlation between terpenes emission from typical forest tree species and environmental elements in temperate zone[J]. Scientia Silvae Sinicae, 2016,52(11):19-28. DOI: 10.11707/j.1001-7488.20161103. | |
[18] | 王志辉, 张树宇, 陆思华, 等. 北京地区植物VOCs排放速率的测定[J]. 环境科学, 2003,24(2):7-12. |
WANG Z H, ZHANG S Y, LU S H, et al. Screenings of 23 plant species in Beijing for volatile organic compound emissions[J]. Chinese Journal of Environmental Science, 2003,24(2):7-12. DOI: 10.13227/j.hjkx.2003.02.002. | |
[19] | 陈颖, 史奕, 何兴元. 沈阳市四种乔木树种BVOCs排放特征[J]. 生态学杂志, 2009,28(12):2410-2416. |
CHEN Y, SHI Y, HE X Y. Emission characteristics of biogenic volatile organic compounds from four tree species in Shenyang, China[J]. Chinese Journal of Ecology, 2009,28(12):2410-2416. DOI: 10.13292/j.1000-4890.2009.0420. | |
[20] | 张莉, 王效科, 欧阳志云, 等. 中国森林生态系统的异戊二烯排放研究[J]. 环境科学, 2003,24(1):8-15. |
ZHANG L, WANG X K, OUYANG Z Y, et al. Estimation of isoprene emission from forest ecosystems in China[J]. Chinese Journal of Enviromental Science, 2003,24(1):8-15. DOI: 10.13227/j.hjkx.2003.01.002. | |
[21] | 蒋跃林, 张庆国, 杨书运, 等. 28种园林植物对大气CO2浓度增加的生理生态反应[J]. 植物资源与环境学报, 2006,15(2):1-6. |
JIANG Y L, ZHANG Q G, YANG S Y, et al. Ecophysiological responses of 28 species of garden plants to atmospheric CO2 enrichment[J]. Journal of Plant Resources and Environment, 2006,15(2):1-6. DOI: 10.3969/j.issn.1674-7895.2006.02.001. | |
[22] | LONG S P, AINSWORTH E A, ROGERS A, et al. Rising atmospheric carbon dioxide: plants FACE the future[J]. Annual Review of Plant Biology, 2004,55(1):591-628. DOI: 10.1146/annurev.arplant.55.031903.141610. |
[23] |
CHEN G Y, YONG Z H, LIAO Y, et al. Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation[J]. Plant and Cell Physiology, 2005,46(7):1036-1045. DOI: 10.1093/pcp/pci113.
doi: 10.1093/pcp/pci113 pmid: 15840641 |
[24] | 陈根云, 廖轶, 蔡时青, 等. 水稻田稗草叶片光合作用对开放式空气CO2浓度增高(FACE)的适应[J]. 应用生态学报, 2002,13(10):1201-1204. |
CHEN G Y, LIAO Y, CAI S Q, et al. Leaf photosynthetic acclimation of Echinochloa crusgalli grown in rice field to free air CO2 enrichment (FACE)[J]. Chinese Journal of Applied Ecology, 2002,13(10):1201-1204. DOI: 10.13287/j.1001-9332.2002.0279 | |
[25] | AINSWORTH E A, DAVEY P A, HYMUS G J, et al. Is stimulation of leaf photosynjournal by elevated carbon dioxide concentration maintained in the long term? A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under Free Air CO2 Enrichment (FACE)[J]. Plant, Cell and Environment, 2003,26(5):705-714. DOI: 10.1046/j.1365-3040.2003.01007.x. |
[26] | AINSWORTH E A, ROGERS A, NELSON R, et al. Testing the “source-sink” hypojournal of down-regulation of photosynjournal in elevated [CO2] in the field with single gene substitutions in Glycine max[J]. Agricultural and Forest Meteorology, 2004,122(1-2):85-94. DOI: 10.1016/j.agrformet.2003.09.002. |
[27] | 韩文军, 廖飞勇, 何平. 大气二氧化碳浓度倍增对闽楠光合性状的影响[J]. 中南林学院学报, 2003,23(2):62-65. |
HAN W J, LIAO F Y, HE P. The photosynthetic response of Phoebe bournei to doubled CO2 concentration in air[J]. Journal of Central South Forestry University, 2003,23(2):62-65. DOI: 10.3969/j.issn.1673-923X.2003.02.009. | |
[28] | TEGELBERG R, JULKUNEN-TIITTO R, VARTIAINEN M, et al. Exposures to elevated CO2, elevated temperature and enhanced UV-B radiation modify activities of polyphenol oxidase and guaiacol peroxidase and concentrations of chlorophylls, polyamines and soluble proteins in the leaves of Betula pendula seedlings[J]. Environmental and Experimental Botany, 2008,62(3):308-315. DOI: 10.1016/j.envexpbot.2007.10.003. |
[29] | 李萍, 郝兴宇, 杨宏斌, 等. 大气CO2浓度升高对绿豆生长发育与产量的影响[J]. 核农学报, 2011,25(2):358-362, 396. |
LI P, HAO X Y, YANG H B, et al. Effects of air CO2 enrichment on growth and yield of mung bean[J]. Acta Agriculturae Nucleatae Sinica, 2011,25(2):358-362, 396. | |
[30] | 翟晓朦, 王铁梅, 关潇, 等. 3种秋眠类型苜蓿对不同CO2浓度的生理响应[J]. 草业科学, 2016,33(8):1550-1559. |
ZHAI X M, WANG T M, GUAN X, et al. Effect of different CO2 concentrations on physiological responses of fall-dormant alfalfa[J]. Pratacultural Science, 2016,33(8):1550-1559. DOI: 10.11829/j.issn.1001-0629.2016-0128. | |
[31] | BLOOM A J, BURGER M, RUBIO-ASENSIO J S R,, et al. Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis[J]. Science, 2010,328(5980):899-903. DOI: 10.1126/science.1186440. |
[32] | 张振, 金国庆, 丰忠平, 等. 马尾松年轮稳定碳同位素比率(δ~(13)C)变化特征及影响因子分析[J]. 植物资源与环境学报, 2019,28(4):24-31. |
ZHANG Z, JIN G Q, FENG Z P, et al. Analyses on variation characteristics and influence factors of ring stable carbon isotope ratio (δ13) of Pinus massoniana[J]. Journal of Plant Resources and Environment, 2019,28(4):24-31.DOI: 10.3969/j.issn.1674-7895.2019.04.03. | |
[33] | 郭世伟, 冉炜, 周毅, 等. 试论大气CO2浓度升高条件下水稻碳氮代谢变化及其调控途径[J]. 中国水稻科学, 2006,20(5):560-566. |
GUO S W, RAN W, ZHOU Y, et al. On carbon and nitrogen metabolism of rice plants under elevated CO2 conditions[J]. Chinese Journal of Rice Science, 2006,20(5):560-566. DOI: 10.16819/j.1001-7216.2006.05.019. | |
[34] | AINSWORTH E A, ROGERS A. The response of photosynjournal and stomatal conductance to rising [CO2]: mechanisms and environmental interactions[J]. Plant, Cell and Environment, 2007,30(3):258-270. DOI: 10.1111/j.1365-3040.2007.01641.x. |
[35] | ENGINEER C B, HASHIMOTO-SUGIMOTO M, NEGI J, et al. CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions[J]. Trends in Plant Science, 2016,21(1):16-30. DOI: 10.1016/j.tplants.2015.08.014. |
[36] |
YUAN J S, HIMANEN S J, HOLOPAINEN J K, et al. Smelling global climate change: mitigation of function for plant volatile organic compounds[J]. Trends in Ecology & Evolution, 2009,24(6):323-331. DOI: 10.1016/j.tree.2009.01.012.
pmid: 19324451 |
[37] | MOCHIZUKI T, WATANABE M, KOIKE T, et al. Monoterpene emissions from needles of hybrid larch F1 (Larix gmelinii var. japonica × Larix kaempferi) grown under elevated carbon dioxide and ozone[J]. Atmospheric Environment, 2017,148:197-202. DOI: 10.1016/j.atmosenv.2016.10.041. |
[38] | TIIVA P, JING T, MICHELSEN A, et al. Monoterpene emissions in response to long-term night-time warming, elevated CO2 and extended summer drought in a temperate heath ecosystem[J]. Science of the Total Environment, 2017,580:1056-1067. DOI: 10.1016/j.scitotenv.2016.12.060. |
[39] | KLAIBER J, NAJAR-RODRIGUEZ A J, PISKORSKI R, et al. Plant acclimation to elevated CO2 affects important plant functional traits, and concomitantly reduces plant colonization rates by an herbivorous insect[J]. Planta, 2013,237(1):29-42. DOI: 10.1007/s00425-012-1750-7. |
[40] |
NIINEMETS Ü. Stomatal constraints May affect emission of oxygenated monoterpenoids from the foliage of Pinus pinea[J]. Plant Physiology, 2002,130(3):1371-1385. DOI: 10.1104/pp.009670.
doi: 10.1104/pp.009670 pmid: 12428002 |
[41] | NIINEMETS Ü, LORETO F, REICHSTEIN M. Physiological and physicochemical controls on foliar volatile organic compound emissions[J]. Trends in Plant Science, 2004,9(4):180-186. DOI: 10.1016/j.tplants.2004.02.006. |
[42] | LORETO F, CICCIOLI P, CECINATO A, et al. Evidence of the photosynthetic origin of monoterpenes emitted by Quercus ilex L. leaves by 13C labeling [J]. Plant Physiology, 1996,110(4):1317-1322. DOI: 10.1104/pp.110.4.1317. |
[43] | JARDINE A B, JARDINE K J, FUENTES J D, et al. Highly reactive light-dependent monoterpenes in the Amazon[J]. Geophysical Research Letters, 2015,42(5):1576-1583. DOI: 10.1002/2014gl062573. |
[44] | PE Ñ UELAS J, LLUSIA J. Seasonal emission of monoterpenes by the Mediterranean tree Quercus ilex in field conditions: Relations with photosynthetic rates, temperature and volatility[J]. Physiologia Plantarum, 1999,105(4):641-647. DOI: 10.1034/j.1399-3054.1999.105407.x. |
[1] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[2] | 范明阳, 胡萌, 杨园, 方炎明. 中国东部地区马尾松与黄山松群落分类及群落结构和物种多样性特征[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 47-58. |
[3] | 韦忆, 韦小丽, 王明彬, 王嫚, 余大龙. 大气CO2浓度升高对红豆树苗木光合生理和形态的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 124-132. |
[4] | 王章荣, 季孔庶, 徐立安, 邹秉章, 林能庆, 林景泉. 马尾松实生种子园营建技术、现实增益及多世代低成本经营新模式探讨[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 9-16. |
[5] | 王宇, 易艳灵, 刘海, 文晓晨, 李天一, 尹海锋, 李贤伟, 范川. 两种采伐方式对马尾松人工林林分空间结构的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 138-146. |
[6] | 竹磊, 徐军亮, 章异平, 罗鹏飞, 师志强, 候佳玉, 翟乐鑫. 河南洛阳马尾松树干液流昼夜变化特征及其影响因子分析[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 92-100. |
[7] | 孙薇, 王斌, 楚秀丽, 王秀花, 张东北, 吴小林, 周志春. 马尾松容器苗生长和养分性状对磷添加和接种菌根菌的响应及关联[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 226-233. |
[8] | 季孔庶, 徐立安, 王登宝, 倪州献, 王章荣. 中国马尾松遗传改良研究历程与成就[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 10-22. |
[9] | 王立超, 苏胜荣, 陈凤毛, 董晓燕, 田成连, 王洋. 黄山马尾松林天牛及携带线虫种类初步调查[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 29-35. |
[10] | 吴佳雯, 尹艳楠, 谈家金, 郝德君. 蜡样芽孢杆菌NJSZ-13菌株诱导马尾松抗松材线虫病研究[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 53-58. |
[11] | 胡兴峰, 吴帆, 孙晓波, 陈厚平, 殷安政, 季孔庶. 38年生马尾松种源生长及材性联合分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 203-212. |
[12] | 吴帆, 朱沛煌, 季孔庶. 马尾松分布格局对未来气候变化的响应[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 196-204. |
[13] | 高景斌, 徐六一, 叶建仁. 马尾松松材线虫病抗性无性系的筛选和遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 109-118. |
[14] | 尹艳楠, 谈家金, 李梦伟, 许嘉麟, 郝德君. 蜡样芽孢杆菌NJSZ-13菌株防治松材线虫病研究[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 152-158. |
[15] | 罗碧珍, 胡海清, 罗斯生, 魏书精, 吴泽鹏, 刘菲. 林火干扰对广东马尾松林土壤有机碳密度及其活性有机碳的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 132-140. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||