南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (1): 1-12.doi: 10.12302/j.issn.1000-2006.202010001
收稿日期:
2020-10-02
接受日期:
2020-12-29
出版日期:
2021-01-30
发布日期:
2021-02-01
基金资助:
TIAN Chengming(), WANG Xiaolian(), YU Lu, HAN Zhu
Received:
2020-10-02
Accepted:
2020-12-29
Online:
2021-01-30
Published:
2021-02-01
摘要:
近年来林木与病原菌互作的分子机制研究成果丰硕,尤其是HIGS与CRISPR/Cas9等技术的发展,促进了林木病原菌关键致病基因的功能、病原菌基因组与转录组学、病原菌效应蛋白、林木抗病基因功能、林木抗病与生长平衡、林木抗病分子育种等多个层面研究的快速发展。从植物-病原菌分子互作的基本问题出发,综述了国内外林木-病原菌分子互作机制研究的进展与热点,包括病原菌侵入过程的信号网络及功能、病原菌活性氧解毒机制及效应蛋白的多种作用机制、林木与病原菌的组学研究进展、林木关键防御机制、林木与内生真菌及外生真菌互作机制等。基于目前的研究进展,对未来林木-病原菌分子互作的发展趋势进行了展望,“Zigzag”理论、“诱饵”假说这些新理论,高效的测序技术及分子操作等新技术, 效应蛋白及免疫受体互作等新方向的出现也预示着林木-病原菌互作研究开始迈入新的阶段。
中图分类号:
田呈明,王笑连,余璐,等. 林木与病原菌分子互作机制研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 1-12.
TIAN Chengming, WANG Xiaolian, YU Lu, HAN Zhu. A review on the studies of molecular interaction between forest trees and phytopathogens[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(1): 1-12.DOI: 10.12302/j.issn.1000-2006.202010001.
[1] |
DEAN R, VAN KAN J A L, PRETORIUS Z A, et al. The top 10 fungal pathogens in molecular plant pathology[J]. Mol Plant Pathol, 2012,13(4):414-430.DOI: 10.1111/j.1364-3703.2011.00783.x.
doi: 10.1111/j.1364-3703.2011.00783.x |
[2] |
KAMOUN S, FURZER O, JONES J D G, et al. The top 10 oomycete pathogens in molecular plant pathology[J]. Mol Plant Pathol, 2015,16(4):413-434.DOI: 10.1111/mpp.12190.
doi: 10.1111/mpp.12190 pmid: 25178392 |
[3] |
MANSFIELD J, GENIN S, MAGORI S, et al. Top 10 plant pathogenic bacteria in molecular plant pathology[J]. Mol Plant Pathol, 2012,13(6):614-629.DOI: 10.1111/j.1364-3703.2012.00804.x.
doi: 10.1111/j.1364-3703.2012.00804.x |
[4] |
JOHAL G S, BRIGGS S P. Reductase activity encoded by the HM1 disease resistance gene in maize[J]. Science, 1992,258(5084):985-987.DOI: 10.1126/science.1359642.
doi: 10.1126/science.1359642 pmid: 1359642 |
[5] |
LI J, WEN J Q, LEASE K A, et al. BAK1,an Arabidopsis LRR receptor-like protein kinase,interacts with BRI1 and modulates brassinosteroid signaling[J]. Cell, 2002,110(2):213-222.DOI: 10.1016/s0092-8674(02)00812-7.
doi: 10.1016/s0092-8674(02)00812-7 pmid: 12150929 |
[6] |
LIEBRAND T W, VAN DEN BURG H A, JOOSTEN M H. Two for all:Receptor-associated kinases SOBIR1 and BAK1[J]. Trends Plant Sci, 2014,19(2):123-132.DOI: 10.1016/j.tplants.2013.10.003.
doi: 10.1016/j.tplants.2013.10.003 pmid: 24238702 |
[7] |
LU D, HE P, SHAN L. Bacterial effectors target BAK1-associated receptor complexes:One stone two birds[J]. Commun Integr Biol, 2010,3(2):80-83.DOI: 10.4161/cib.3.2.10301.
doi: 10.4161/cib.3.2.10301 pmid: 20585495 |
[8] |
GUST A A, PRUITT R, NÜRNBERGER T. Sensing danger:Key to activating plant immunity[J]. Trends Plant Sci, 2017,22(9):779-791.DOI: 10.1016/j.tplants.2017.07.005.
doi: 10.1016/j.tplants.2017.07.005 pmid: 28779900 |
[9] | ZHOU F, EMONET A, DÉNERVAUD TENDON V, et al. Co-incidence of damage and microbial patterns controls localized immune responses in roots[J]. Cell, 2020,180(3):440-453.e18.DOI: 10.1016/j.cell.2020.01.013. |
[10] | ZHOU F, EMONET A, DÉNERVAUD TENDON V, et al. Co-incidence of damage and microbial patterns controls localized immune responses in roots[J]. Cell, 2020,180(3):440-453.e18.DOI: 10.1016/j.cell.2020.01.013. |
[11] |
BIAŁAS A, ZESS E K, DE LA CONCEPCION J C, et al. Lessons in effector and NLR biology of plant-microbe systems[J]. Mol Plant Microbe Interact, 2018,31(1):34-45.DOI: 10.1094/mpmi-08-17-0196-fi.
doi: 10.1094/MPMI-08-17-0196-FI pmid: 29144205 |
[12] |
BONARDI V, TANG S, STALLMANN A, et al. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors[J]. PNAS, 2011,108(39):16463-16468.DOI: 10.1073/pnas.1113726108.
doi: 10.1073/pnas.1113726108 pmid: 21911370 |
[13] |
JUBIC L M, SAILE S, FURZER O J, et al. Help wanted:helper NLRs and plant immune responses[J]. Curr Opin Plant Biol, 2019,50:82-94.DOI: 10.1016/j.pbi.2019.03.013.
doi: 10.1016/j.pbi.2019.03.013 pmid: 31063902 |
[14] |
ZHANG H, DEMIRER G S, ZHANG H, et al. DNA nanostructures coordinate gene silencing in mature plants[J]. PNAS, 2019,116(15):7543-7548.DOI: 10.1073/pnas.1818290116.
doi: 10.1073/pnas.1818290116 pmid: 30910954 |
[15] |
WANG H, ZOU S, LI Y, et al. An ankyrin-repeat and WRKY-domain-containing immune receptor confers stripe rust resistance in wheat[J]. Nat Commun, 2020,11(1):1353.DOI: 10.1038/s41467-020-15139-6.
doi: 10.1038/s41467-020-15139-6 pmid: 32170056 |
[16] |
LI N, LIN B, WANG H, et al. Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize[J]. Nat Genet, 2019,51(10):1540-1548.DOI: 10.1038/s41588-019-0503-y.
doi: 10.1038/s41588-019-0503-y pmid: 31570888 |
[17] |
WANG H, SUN S, GE W, et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat[J]. Science, 2020,368(6493).DOI: 10.1126/science.aba5435.
doi: 10.1126/science.abb5162 pmid: 32439777 |
[18] |
XU G, YUAN M, AI C, et al. uORF-mediated translation allows engineered plant disease resistance without fitness costs[J]. Nature, 2017,545(7655):491-494.DOI: 10.1038/nature22372.
doi: 10.1038/nature22372 pmid: 28514448 |
[19] |
MAHER M F, NASTI R A, VOLLBRECHT M, et al. Plant gene editing through de novo induction of meristems[J]. Nat Biotechnol, 2020,38(1):84-89.DOI: 10.1093/bioinformatics/btw561.
doi: 10.1038/s41587-019-0337-2 pmid: 31844292 |
[20] |
DEMIRER G S, ZHANG H, GOH N S, et al. Carbon nanotube-mediated DNA delivery without transgene integration in intact plants[J]. Nat Protoc, 2019,14(10):2954-2971.DOI: 10.1038/s41596-019-0208-9.
doi: 10.1038/s41596-019-0208-9 pmid: 31534231 |
[21] |
LORRAIN C, GONÇALVES D K C, GERMAIN H, et al. Advances in understanding obligate biotrophy in rust fungi[J]. New Phytol, 2019,222(3):1190-1206.DOI: 10.1111/nph.15641.
doi: 10.1111/nph.15641 pmid: 30554421 |
[22] |
DE JONGE R, VAN ESSE H P, KOMBRINK A, et al. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants[J]. Science, 2010,329(5994):953-955.DOI: 10.1126/science.1190859.
doi: 10.1126/science.1190859 pmid: 20724636 |
[23] |
GAO F, ZHANG B S, ZHAO J H, et al. Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens[J]. Nat Plants, 2019,5(11):1167-1176.DOI: 10.1038/s41477-019-0527-4.
doi: 10.1038/s41477-019-0527-4 pmid: 31636399 |
[24] |
MA Z, ZHU L, SONG T, et al. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor[J]. Science, 2017,355(6326):710-714.DOI: 10.1126/science.aai7919.
doi: 10.1126/science.aai7919 pmid: 28082413 |
[25] |
NAVARRO L, JAY F, NOMURA K, et al. Suppression of the microRNA pathway by bacterial effector proteins[J]. Science, 2008,321(5891):964-967.DOI: 10.1126/science.1159505.
doi: 10.1126/science.1159505 pmid: 18703740 |
[26] |
YIN C, RAMACHANDRAN S R, ZHAI Y, et al. A novel fungal effector from Puccinia graminis suppressing RNA silencing and plant defense responses[J]. New Phytol, 2019,222(3):1561-1572.DOI: 10.1111/nph.15676.
doi: 10.1111/nph.15676 pmid: 30623449 |
[27] | HOU Y, ZHAI Y, FENG L, et al. A Phytophthora effector suppresses trans-kingdom RNAi to promote disease susceptibility[J]. Cell Host Microbe, 2019,25(1):153-165.e5.DOI: 10.1016/j.chom.2018.11.007. |
[28] |
QIAO Y, SHI J, ZHAI Y, et al. Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection[J]. PNAS, 2015,112(18):5850-5855.DOI: 10.1073/pnas.1421475112.
doi: 10.1073/pnas.1421475112 pmid: 25902521 |
[29] |
KETTLES G J, BAYON C, SPARKS C A, et al. Characterization of an antimicrobial and phytotoxic ribonuclease secreted by the fungal wheat pathogen Zymoseptoria tritici[J]. New Phytol, 2018,217(1):320-331.DOI: 10.1111/nph.14786.
doi: 10.1111/nph.14786 pmid: 28895153 |
[30] |
SNELDERS N C, KETTLES G J, RUDD J J, et al. Plant pathogen effector proteins as manipulators of host microbiomes?[J]. Mol Plant Pathol, 2018,19(2):257-259.DOI: 10.1111/mpp.12628.
doi: 10.1111/mpp.12628 pmid: 29368817 |
[31] |
BONAS U, STALL R E, STASKAWICZ B. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv.vesicatoria[J]. Mol Gen Genet MGG, 1989,218(1):127-136.DOI: 10.1007/BF00330575.
doi: 10.1007/BF00330575 pmid: 2550761 |
[32] |
GÓMEZ-GÓMEZ L, BAUER Z, BOLLER T. Both the extracellular leucine-rich repeat domain and the kinase activity of FSL2 are required for flagellin binding and signaling in Arabidopsis[J]. Plant Cell, 2001,13(5):1155-1163.DOI: 10.1105/tpc.13.5.1155.
pmid: 11340188 |
[33] |
GALAGAN JE, CALVO S E, BORKOVICH K A, et al. The genome sequence of the filamentous fungus Neurospora crassa[J]. Nature, 2003,422(6934):859-868.DOI: 10.1038/nature01554.
doi: 10.1038/nature01554 pmid: 12712197 |
[34] |
DEAN RA, TALBOT N J, EBBOLE D J, et al. The genome sequence of the rice blast fungus Magnaporthe grisea[J]. Nature, 2005,434(7036):980-986.DOI: 10.1038/nature03449.
doi: 10.1038/nature03449 pmid: 15846337 |
[35] |
JONES J D G, DANGL J L. The plant immune system[J]. Nature, 2006,444(7117):323-329.DOI: 10.1038/nature05286.
doi: 10.1038/nature05286 pmid: 17108957 |
[36] |
ZHANG J, ZHOU J M. Plant immunity triggered by microbial molecular signatures[J]. Mol Plant, 2010,3(5):783-793.DOI: 10.1093/mp/ssq035.
doi: 10.1093/mp/ssq035 pmid: 20713980 |
[37] |
KHANG C H, BERRUYER R, GIRALDO M C, et al. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement[J]. Plant Cell, 2010,22(4):1388-1403.DOI: 10.1105/tpc.109.069666.
doi: 10.1105/tpc.109.069666 pmid: 20435900 |
[38] |
HAN Z, SUN Y, CHAI J. Structural insight into the activation of plant receptor kinases[J]. Curr Opin Plant Biol, 2014,20:55-63.DOI: 10.1016/j.pbi.2014.04.008.
doi: 10.1016/j.pbi.2014.04.008 pmid: 24840292 |
[39] |
MACHO AP, LOZANO-DURÁN R, ZIPFEL C. Importance of tyrosine phosphorylation in receptor kinase complexes[J]. Trends Plant Sci, 2015,20(5):269-272.DOI: 10.1016/j.tplants.2015.02.005.
doi: 10.1016/j.tplants.2015.02.005 pmid: 25795237 |
[40] |
DENG Y, ZHAI K, XIE Z, et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance[J]. Science, 2017,355(6328):962-965.DOI: 10.1126/science.aai8898.
doi: 10.1126/science.aai8898 pmid: 28154240 |
[41] | LI W, ZHU Z, CHERN M, et al. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance[J]. Cell, 2017,170(1):114-126.e15.DOI: 10.1016/j.cell.2017.06.008. |
[42] |
HUA C, ZHAO J H, GUO H S. Trans-kingdom RNA silencing in plant-fungal pathogen interactions[J]. Mol Plant, 2018,11(2):235-244.DOI: 10.1016/j.molp.2017.12.001.
doi: 10.1016/j.molp.2017.12.001 pmid: 29229568 |
[43] |
WANG J, WANG J, HU M, et al. Ligand-triggered allosteric ADP release primes a plant NLR complex[J]. Science, 2019,364(6435).DOI: 10.1126/science.aav5868.
doi: 10.1126/science.364.6435.15 pmid: 30948534 |
[44] |
WANG J, HU M, WANG J, et al. Reconstitution and structure of a plant NLR resistosome conferring immunity[J]. Science, 2019,364(6435).DOI: 10.1126/science.aav5870.
doi: 10.1126/science.364.6435.15 pmid: 30948534 |
[45] |
HE P, WANG Y, WANG X, et al. The mitogen-activated protein kinase CgMK1 governs appressorium formation,melanin synjournal,and plant infection of Colletotrichum gloeosporioides[J]. Front Microbiol, 2017,8:2216.DOI: 10.3389/fmicb.2017.02216.
doi: 10.3389/fmicb.2017.02216 pmid: 29176970 |
[46] | FANG Y L, XIA L M, WANG P, et al. The MAPKKK CgMck1 is required for cell wall integrity,appressorium development,and pathogenicity in Colletotrichum gloeosporioides[J]. Genes (Basel), 2018,9(11).DOI: 10.3390/genes9110543. |
[47] |
LIN C H, YANG S L, CHUNG K R. Cellular responses required for oxidative stress tolerance,colonization,and lesion formation by the necrotrophic fungus Alternaria alternata in Citrus[J]. Curr Microbiol, 2011,62(3):807-815.DOI: 10.1007/s00284-010-9795-y.
doi: 10.1007/s00284-010-9795-y |
[48] |
TSUGE T, HARIMOTO Y, AKIMITSU K, et al. Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata[J]. FEMS Microbiol Rev, 2013,37(1):44-66.DOI: 10.1111/j.1574-6976.2012.00350.x.
doi: 10.1111/j.1574-6976.2012.00350.x pmid: 22846083 |
[49] |
GARGANESE F, SCHENA L, SICILIANO I, et al. Characterization of Citrus-associated Alternaria species in Mediterranean areas[J]. PLoS One, 2016,11(9):e0163255.DOI: 10.1371/journal.pone.0163255.
pmid: 27636202 |
[50] |
MIYAMOTO Y, MASUNAKA A, TSUGE T, et al. Functional analysis of a multicopy host-selective ACT-toxin biosynjournal gene in the tangerine pathotype of Alternaria alternata using RNA silencing[J]. Mol Plant Microbe Interact, 2008,21(12):1591-1599.DOI: 10.1094/mpmi-21-12-1591.
doi: 10.1094/MPMI-21-12-1591 pmid: 18986255 |
[51] |
TANABE K, NISHIMURA S, KOHMOTO K. Pathogenicity of cutinase-and pectic enzymes-deficient mutants of Alternaria alternata Japanese pear pathotype[J]. Jpn J Phytopathol, 1988,54(4):552-555.DOI: 10.3186/jjphytopath.54.552.
doi: 10.3186/jjphytopath.54.552 |
[52] |
DELLEDONNE M, ZEIER J, MAROCCO A, et al. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response[J]. Proc Natl Acad Sci USA, 2001,98(23):13454-13459.DOI: 10.1073/pnas.231178298.
doi: 10.1073/pnas.231178298 pmid: 11606758 |
[53] |
RODRÍGUEZ-PALENZUELA P, MATAS I M, MURILLO J, et al. Annotation and overview of the Pseudomonas savastanoi pv.savastanoi NCPPB 3335 draft genome reveals the virulence gene complement of a tumour-inducing pathogen of woody hosts[J]. Environ Microbiol, 2010,12(6):1604-1620.DOI: 10.1111/j.1462-2920.2010.02207.x.
doi: 10.1111/j.1462-2920.2010.02207.x pmid: 20370821 |
[54] |
DELLEDONNE M, XIA Y J, DIXON R A, et al. Nitric oxide functions as a signal in plant disease resistance[J]. Nature, 1998,394(6693):585-588.DOI: 10.1038/29087.
doi: 10.1038/29087 pmid: 9707120 |
[55] |
ALKAN N, MENG X, FRIEDLANDER G, et al. Global aspects of pacC regulation of pathogenicity genes in Colletotrichum gloeosporioides as revealed by transcriptome analysis[J]. Mol Plant Microbe Interact, 2013,26(11):1345-1358.DOI: 10.1094/mpmi-03-13-0080-r.
doi: 10.1094/MPMI-03-13-0080-R pmid: 23902260 |
[56] |
YAKOBY N, BENO-MOUALEM D, KEEN N T, et al. Colletotrichum gloeosporioides pelB is an important virulence factor in avocado fruit-fungus interaction[J]. Mol Plant Microbe Interact, 2001,14(8):988-995.DOI: 10.1094/mpmi.2001.14.8.988.
doi: 10.1094/MPMI.2001.14.8.988 pmid: 11497471 |
[57] |
WANG Y Y, WANG Y L. Oxalic acid metabolism contributes to full virulence and pycnidial development in the poplar canker fungus Cytospora chrysosperma[J]. Phytopathology, 2020,110(7):1319-1325.DOI: 10.1094/PHYTO-10-19-0381-R.
doi: 10.1094/PHYTO-10-19-0381-R pmid: 32154765 |
[58] |
YU C, LI T, SHI X, et al. Deletion of endo-β-1,4-xylanase VmXyl1 impacts the virulence of Valsa mali in apple tree[J]. Front Plant Sci, 2018,9:663.DOI: 10.3389/fpls.2018.00663.
doi: 10.3389/fpls.2018.00663 pmid: 29868105 |
[59] |
WU Y, XU L, YIN Z, et al. Two members of the velvet family,VmVeA and VmVelB,affect conidiation,virulence and pectinase expression in Valsa mali[J]. Mol Plant Pathol, 2018,19(7):1639-1651.DOI: 10.1111/mpp.12645.
doi: 10.1111/mpp.12645 pmid: 29127722 |
[60] |
WU YX, XU L S, LIU J, et al. A mitogen-activated protein kinase gene (VmPmk1) regulates virulence and cell wall degrading enzyme expression in Valsa mali[J]. Microb Pathog, 2017,111:298-306.DOI: 10.1016/j.micpath.2017.09.003.
doi: 10.1016/j.micpath.2017.09.003 pmid: 28888885 |
[61] |
YIN Z, LIU H, LI Z, et al. Genome sequence of Valsa canker pathogens uncovers a potential adaptation of colonization of woody bark[J]. New Phytol, 2015,208(4):1202-1216.DOI: 10.1111/nph.13544.
doi: 10.1111/nph.13544 pmid: 26137988 |
[62] |
CHEN L H, LIN C H, CHUNG K R. Roles for SKN7 response regulator in stress resistance,conidiation and virulence in the Citrus pathogen Alternaria alternata[J]. Fungal Genet Biol, 2012,49(10):802-813.DOI: 10.1016/j.fgb.2012.07.006.
doi: 10.1016/j.fgb.2012.07.006 |
[63] |
CHEN L H, YANG S L, CHUNG K R. Resistance to oxidative stress via regulating siderophore-mediated iron acquisition by the Citrus fungal pathogen Alternaria alternata[J]. Microbiology (Reading), 2014,160(pt 5):970-979.DOI: 10.1099/mic.0.076182-0.
doi: 10.1099/mic.0.076182-0 |
[64] |
CHUNG K R. Reactive oxygen species in the Citrus fungal pathogen Alternaria alternata:The roles of NADPH-dependent oxidase[J]. Physiol Mol Plant Pathol, 2014,88:10-17.DOI: 10.1016/j.pmpp.2014.08.001.
doi: 10.1016/j.pmpp.2014.08.001 |
[65] |
LIN C H, YANG S L, CHUNG K R. Cellular responses required for oxidative stress tolerance,colonization,and lesion formation by the necrotrophic fungus Alternaria alternata in Citrus[J]. Curr Microbiol, 2011,62(3):807-815.DOI: 10.1007/s00284-010-9795-y.
doi: 10.1007/s00284-010-9795-y |
[66] |
YANG S L, CHUNG K R. Similar and distinct roles of NADPH oxidase components in the tangerine pathotype of Alternaria alternata[J]. Mol Plant Pathol, 2013,14(6):543-556.DOI: 10.1111/mpp.12026.
doi: 10.1111/mpp.12026 |
[67] |
YU P L, CHEN L H, CHUNG K R. How the pathogenic fungus Alternaria alternata copes with stress via the response regulators SSK1 and SHO1[J]. PLoS One, 2016,11(2):e0149153.DOI: 10.1371/journal.pone.0149153.
doi: 10.1371/journal.pone.0149153 pmid: 26863027 |
[68] |
YANG S L, YU P L, CHUNG K R. The glutathione peroxidase-mediated reactive oxygen species resistance,fungicide sensitivity and cell wall construction in the Citrus fungal pathogen Alternaria alternata[J]. Environ Microbiol, 2016,18(3):923-935.DOI: 10.1111/1462-2920.13125.
doi: 10.1111/1462-2920.13125 pmid: 26567914 |
[69] |
SUN Y, WANG Y, TIAN C. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides[J]. Fungal Genet Biol, 2016,95:58-66.DOI: 10.1016/j.fgb.2016.08.006.
doi: 10.1016/j.fgb.2016.08.006 pmid: 27544415 |
[70] |
WANG X, XU X, LIANG Y, et al. A Cdc42 homolog in Colletotrichum gloeosporioides regulates morphological development and is required for ROS-mediated plant infection[J]. Curr Genet, 2018,64(5):1153-1169.DOI: 10.1007/s00294-018-0833-9.
doi: 10.1007/s00294-018-0833-9 pmid: 29700579 |
[71] | 韦运谢. 芒果炭疽病菌漆酶基因Lac1的克隆与致病相关功能鉴定[D]. 海口:海南大学, 2014. |
WEI Y X. Coloning and functional identification of laccase gene(Lac1) in pathogenicity from Colletotrichum gloeosporioides-the pathogen of mango anthracnose disease[D]. Haikou:Hainan University, 2014. | |
[72] |
TANG C, JIN X J, KLOSTERMAN S J, et al. Convergent and distinctive functions of transcription factors VdYap1,VdAtf1,and VdSkn7 in the regulation of nitrosative stress resistance,microsclerotia formation,and virulence in Verticillium dahliae[J]. Mol Plant Pathol, 2020,21(11):1451-1466.DOI: 10.1111/mpp.12988.
doi: 10.1111/mpp.12988 pmid: 32954659 |
[73] |
DE GUILLEN K, LORRAIN C, TSAN P, et al. Structural genomics applied to the rust fungus Melampsora larici-Populina reveals two candidate effector proteins adopting cystine knot and NTF2-like protein folds[J]. Sci Rep, 2019,9(1):18084.DOI: 10.1038/s41598-019-53816-9.
doi: 10.1038/s41598-019-53816-9 pmid: 31792250 |
[74] |
AHMED M B, SANTOS K C G D, SANCHEZ I B, et al. A rust fungal effector binds plant DNA and modulates transcription[J]. Sci Rep, 2018,8(1):14718.DOI: 10.1038/s41598-018-32825-0.
doi: 10.1038/s41598-018-32825-0 pmid: 30283062 |
[75] | 刘霞, 陶思齐, 翁涵, 等. 山田胶锈菌和亚洲胶锈菌吸器提取体系建立[J]. 菌物学报, 2019,38(9):1430-1439. |
LIU X, TAO S Q, WENG H, et al. Construction of haustorial isolation systems of Gymnosporangium yamadae and G.asiaticum[J]. Mycosystema, 2019,38(9),38:1430-1439.DOI: 10.13346/j.mycosystema.190049. | |
[77] | 何其光, 刘耀, 廖小淼, 等. 橡胶树白粉菌非经典型分泌效应蛋白OH0367抑制植物水杨酸的合成[C]// 中国植物病理学会第十一届全国会员代表大会暨2018年学术年会论文集.北京, 2018: 57. |
[78] | 黄小花, 许锋, 程华, 等. 转录组测序在高等植物中的研究进展[J]. 黄冈师范学院学报, 2014,34(6):28-35. |
HUANG X H, XU F, CHENG H, et al. Recent advances of transcriptome sequencing in higher plants[J]. J Huanggang Norm Univ, 2014,34(6):28-35. | |
[79] | 牛春阳, 李丹蕾, 王峰, 等. 基于转录组的欧美杨Pnd-WRKY3基因克隆及其抗锈菌表达[J]. 东北林业大学学报, 2015,43(9):1-5. |
NIU C Y, LI D L, WANG F, et al. Isolation and Isolation and expression of pnd-WRKY3 transcription factor gene from poplar(Populus nigra × P.deltoides)[J]. J Northeast For Univ, 2015,43(9),43:1-5.DOI: 10.13759/j.cnki.dlxb.20150721.002. | |
[80] |
PETRE B, HACQUARD S, DUPLESSIS S, et al. Genome analysis of poplar LRR-RLP gene clusters reveals RISP,a defense-related gene coding a candidate endogenous peptide elicitor[J]. Front Plant Sci, 2014,5:111.DOI: 10.3389/fpls.2014.00111.
doi: 10.3389/fpls.2014.00111 pmid: 24734035 |
[81] |
TAO SQ, CAO B, TIAN C M, et al. Comparative transcriptome analysis and identification of candidate effectors in two related rust species (Gymnosporangium yamadae and Gymnosporangium asiaticum)[J]. BMC Genomics, 2017,18(1):651.DOI: 10.1186/s12864-017-4059-x.
doi: 10.1186/s12864-017-4059-x pmid: 28830353 |
[82] |
ZENG Z, SUN H, VAINIO E J, et al. Intraspecific comparative genomics of isolates of the Norway spruce pathogen (Heterobasidion parviporum) and identification of its potential virulence factors[J]. BMC Genomics, 2018,19(1):220.DOI: 10.1186/s12864-018-4610-4.
doi: 10.1186/s12864-018-4610-4 pmid: 29580224 |
[83] |
CHEN C, YAO Y, ZHANG L, et al. A comprehensive analysis of the transcriptomes of Marssonina brunnea and infected poplar leaves to capture vital events in host-pathogen interactions[J]. PLoS One, 2015,10(7):e0134246.DOI: 10.1371/journal.pone.0134246.
doi: 10.1371/journal.pone.0134246 pmid: 26222429 |
[84] | 田小敏. 基于转录组水平的苹果抗白粉病基因筛选与感病叶片生理指标分析[D]. 杨凌:西北农林科技大学, 2019. |
TIAN X M. Study on physiological indicators response to powdery mildew of apple and screening of the resistant gene based on transcriptome analysis[D]. Yangling:Northwest A & F University, 2019. | |
[85] | 周凌云, 刘红艳, 李维, 等. 基于转录组学分析茶叶与茶白星病菌的互作研究[C]// 成都:中国植物病理学会2019年学术年会论文集, 2019: 201. |
[86] | 祝友朋, 韩长志, 熊智. 核桃细菌性黑斑病菌分泌蛋白质的理化性质及特征分析[J]. 江苏农业学报, 2019,35(2):295-301. |
ZHU Y P, HAN C Z, XIONG Z. Physicochemical properties and characteristic analysis of secretory proteins in walnut bacterial black spot pathogen[J]. Jiangsu J Agric Sci, 2019,35(2):295-301.DOI: 10.3969/j.issn.1000-4440.2019.02.008. | |
[87] |
THAPA S P, DE FRANCESCO A, TRINH J, et al. Genome-wide analyses of Liberibacter species provides insights into evolution,phylogenetic relationships,and virulence factors[J]. Mol Plant Pathol, 2020,21(5):716-731.DOI: 10.1111/mpp.12925.
doi: 10.1111/mpp.12925 pmid: 32108417 |
[88] |
AUSUBEL F M. Are innate immune signaling pathways in plants and animals conserved?[J]. Nat Immunol, 2005,6(10):973-979.DOI: 10.1038/ni1253.
doi: 10.1038/ni1253 pmid: 16177805 |
[89] |
SHI QC, FEBRES V J, JONES J B, et al. Responsiveness of different Citrus genotypes to theXanthomonas citrissp.citri-derived pathogen-associated molecular pattern (PAMP) flg22 correlates with resistance to Citrus canker[J]. Mol Plant Pathol, 2015,16(5):507-520.DOI: 10.1111/mpp.12206.
doi: 10.1111/mpp.12206 pmid: 25231217 |
[90] |
GAO Z S, VAN DE WEG W E. The V _ f gene for scab resistance in apple is linked to sub-lethal genes[J]. Euphytica, 2006,151(1):123-132.DOI: 10.1007/s10681-005-9082-3.
doi: 10.1007/s10681-005-9082-3 |
[91] |
MENG XZ, XU J, HE Y X, et al. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance[J]. Plant Cell, 2013,25(3):1126-1142.DOI: 10.1105/tpc.112.109074.
doi: 10.1105/tpc.112.109074 |
[92] |
DE OLIVEIRA M L, DE LIMA SILVA C C, ABE V Y, et al. Increased resistance against Citrus canker mediated by a Citrus mitogen-activated protein kinase[J]. Mol Plant Microbe Interact, 2013,26(10):1190-1199.DOI: 10.1094/mpmi-04-13-0122-r.
doi: 10.1094/MPMI-04-13-0122-R pmid: 23777433 |
[93] |
WANG G, LOVATO A, LIANG Y H, et al. Validation by isolation and expression analyses of the mitogen-activated protein kinase gene family in the grapevine (Vitis vinifera L.)[J]. Aust J Grape Wine Res, 2014,20(2):255-262.DOI: 10.1111/ajgw.12081.
doi: 10.1111/ajgw.2014.20.issue-2 |
[94] |
WANG G, LOVATO A, POLVERARI A, et al. Genome-wide identification and analysis of mitogen activated protein kinase kinase kinase gene family in grapevine (Vitis vinifera)[J]. BMC Plant Biol, 2014,14:219.DOI: 10.1186/s12870-014-0219-1.
doi: 10.1186/s12870-014-0219-1 pmid: 25158790 |
[95] |
RAMAMOORTHY R, JIANG S Y, KUMAR N, et al. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments[J]. Plant Cell Physiol, 2008,49(6):865-879.DOI: 10.1093/pcp/pcn061.
doi: 10.1093/pcp/pcn061 pmid: 18413358 |
[96] |
BIRKENBIHL R P, KRACHER B, ROCCARO M, et al. Induced genome-wide binding of three Arabidopsis WRKY transcription factors during early MAMP-triggered immunity[J]. Plant Cell, 2017,29(1):20-38.DOI: 10.1105/tpc.16.00681.
doi: 10.1105/tpc.16.00681 pmid: 28011690 |
[97] |
WU K L, GUO Z J, WANG H H, et al. The WRKY family of transcription factors in rice and Arabidopsis and their origins[J]. DNA Res, 2005,12(1):9-26.DOI: 10.1093/dnares/12.1.9.
doi: 10.1093/dnares/12.1.9 pmid: 16106749 |
[98] |
ZHAO H, JIANG J, LI K, et al. Populus simonii × Populus nigra WRKY70 is involved in salt stress and leaf blight disease responses[J]. Tree Physiol, 2017,37(6):827-844.DOI: 10.1093/treephys/tpx020.
doi: 10.1093/treephys/tpx020 pmid: 28369503 |
[99] | 罗昌国, 袁启凤, 裴晓红, 等. 富士苹果MdWRKY40b基因克隆及其对白粉病的抗性分析[J]. 西北植物学报, 2013,33(12):2382-2387. |
LUO C G, YUAN Q F, PEI X H, et al. Cloning of MdWRKY40b gene in fuji apple and its response to powdery mildew stress[J]. Acta Bot Boreali-Occidentalia Sin, 2013,33(12),33:2382-2387. | |
[100] | 张计育, 佟兆国, 高志红, 等. SA、MeJA、ACC和苹果轮纹病病原菌诱导湖北海棠MhWRKY1基因的表达[J]. 中国农业科学, 2011,44(5):990-999. |
ZHANG J Y, TONG Z G, GAO Z H, et al. Expression of MhWRKY1 gene induced by the elicitors SA,MeJA,ACC and the apple ring spot pathogen[J]. Sci Agric Sin, 2011,44(5), 44:990-999. | |
[101] |
贾瑞瑞, 周鹏飞, 白晓晶, 等. 柑橘响应溃疡病菌转录因子CsBZIP40的克隆及功能分析[J]. 中国农业科学, 2017,50(13):2488-2497.
doi: 10.3864/j.issn.0578-1752.2017.13.008 |
JIA R R, ZHOU P F, BAI X J, et al. Gene cloning and expression analysis of canker-related transcription factor Cs BZIP40 in Citrus[J]. Sci Agric Sin, 2017,50(13), 50:2488-2497. | |
[102] |
HAN P L, DONG Y H, GU K D, et al. The apple U-box E3 ubiquitin ligase MdPUB29 contributes to activate plant immune response to the fungal pathogen Botryosphaeria dothidea[J]. Planta, 2019,249(4):1177-1188.DOI: 10.1007/s00425-018-03069-z.
doi: 10.1007/s00425-018-03069-z pmid: 30603792 |
[103] |
HAN P L, WANG C K, LIU X J, et al. BTB-BACK domain E3 ligase MdPOB1 suppresses plant pathogen defense against Botryosphaeria dothidea by ubiquitinating and degrading MdPUB29 protein in apple[J]. Plant Cell Physiol, 2019,60(10):2129-2140.DOI: 10.1093/pcp/pcz106.
doi: 10.1093/pcp/pcz106 pmid: 31165159 |
[104] |
HAN P L, DONG Y H, JIANG H, et al. Molecular cloning and functional characterization of apple U-box E3 ubiquitin ligase gene MdPUB29 reveals its involvement in salt tolerance[J]. J Integr Agric, 2019,18(7):1604-1612.DOI: 10.1016/S2095-3119(19)62594-3.
doi: 10.1016/S2095-3119(19)62594-3 |
[105] |
LIAO D, CAO Y, SUN X, et al. Arabidopsis E3 ubiquitin ligase PLANT U-BOX13 (PUB13) regulates chitin receptor LYSIN MOTIF RECEPTOR KINASE5 (LYK5) protein abundance[J]. New Phytol, 2017,214(4):1646-1656.DOI: 10.1111/nph.14472.
doi: 10.1111/nph.14472 pmid: 28195333 |
[106] |
LIU QN, NING Y S, ZHANG Y X, et al. OsCUL3a negatively regulates cell death and immunity by degrading OsNPR1 in rice[J]. Plant Cell, 2017,29(2):345-359.DOI: 10.1105/tpc.16.00650.
doi: 10.1105/tpc.16.00650 pmid: 28100706 |
[107] |
VAN LOON L C, REP M, PIETERSE C M J. Significance of inducible defense-related proteins in infected plants[J]. Annu Rev Phytopathol, 2006,44:135-162.DOI: 10.1146/annurev.phyto.44.070505.143425.
doi: 10.1146/annurev.phyto.44.070505.143425 pmid: 16602946 |
[108] |
WANG Y, ZHOU L, YU X, et al. Transcriptome profiling of huanglongbing (HLB) tolerant and susceptible Citrus plants reveals the role of basal resistance in HLB tolerance[J]. Front Plant Sci, 2016,7:933.DOI: 10.3389/fpls.2016.00933.
doi: 10.3389/fpls.2016.00933 pmid: 27446161 |
[109] |
ZHONG Y, CHENG C, JIANG B, et al. Digital gene expression analysis of ponkan mandarin (Citrus reticulata blanco) in response to Asia Citrus psyllid-vectored huanglongbing infection[J]. Int J Mol Sci, 2016,17(7).DOI: 10.3390/ijms17071063.
doi: 10.3390/ijms17071174 pmid: 27447629 |
[110] |
POLIN LD, LIANG H Y, ROTHROCK R E, et al. Agrobacterium-mediated transformation of American chestnut (Castanea dentata (Marsh.) Borkh.) somatic embryos[J]. Plant Cell Tissue Organ Cult, 2006,84(1):69-79.DOI: 10.1007/s11240-005-9002-1.
doi: 10.1007/s11240-005-9002-1 |
[111] |
STEINER K C, WESTBROOK J W, HEBARD F V, et al. Rescue of American chestnut with extraspecific genes following its destruction by a naturalized pathogen[J]. New For, 2017,48(2):317-336.DOI: 10.1007/s11056-016-9561-5.
doi: 10.1007/s11056-016-9561-5 |
[112] |
NEWHOUSE A E, POLIN-MCGUIGAN L D, BAIER K A, et al. Transgenic American chestnuts show enhanced blight resistance and transmit the trait to T1 progeny[J]. Plant Sci, 2014,228:88-97.DOI: 10.1016/j.plantsci.2014.04.004.
doi: 10.1016/j.plantsci.2014.04.004 |
[113] |
ZHANG B, OAKES A D, NEWHOUSE A E, et al. A threshold level of oxalate oxidase transgene expression reduces Cryphonectria parasitica-induced necrosis in a transgenic American chestnut (Castanea dentata) leaf bioassay[J]. Transgenic Res, 2013,22(5):973-982.DOI: 10.1007/s11248-013-9708-5.
doi: 10.1007/s11248-013-9708-5 |
[114] |
LIANG HY, MAYNARD C A, ALLEN R D, et al. Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene[J]. Plant Mol Biol, 2001,45(6):619-629.DOI: 10.1023/A:1010631318831.
doi: 10.1023/A:1010631318831 |
[115] |
NOWARA D, GAY A, LACOMME C, et al. HIGS:host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis[J]. Plant Cell, 2010,22(9):3130-3141.DOI: 10.1105/tpc.110.077040.
doi: 10.1105/tpc.110.077040 pmid: 20884801 |
[116] |
PANWAR V, MCCALLUM B, BAKKEREN G. Endogenous silencing of Puccinia triticina pathogenicity genes through in planta-expressed sequences leads to the suppression of rust diseases on wheat[J]. Plant J, 2013,73(3):521-532.DOI: 10.1111/tpj.12047.
doi: 10.1111/tpj.12047 |
[117] |
KOCH A, KUMAR N, WEBER L, et al. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to Fusarium species[J]. PNAS, 2013,110(48):19324-19329.DOI: 10.1073/pnas.1306373110.
doi: 10.1073/pnas.1306373110 pmid: 24218613 |
[118] |
ZHANG T, JIN Y, ZHAO J H, et al. Host-induced gene silencing of the target gene in fungal cells confers effective resistance to the cotton wilt disease pathogen Verticillium dahliae[J]. Mol Plant, 2016,9(6):939-942.DOI: 10.1016/j.molp.2016.02.008.
doi: 10.1016/j.molp.2016.02.008 pmid: 26925819 |
[119] |
ZHAO J H, GUO H S. Trans-kingdom RNA interactions drive the evolutionary arms race between hosts and pathogens[J]. Curr Opin Genet Dev, 2019,58/59:62-69.DOI: 10.1016/j.gde.2019.07.019.
doi: 10.1016/j.gde.2019.07.019 |
[120] |
SU Y, LI H G, WANG Y, et al. Poplar miR472a targeting NBS-LRRs is involved in effective defence against the necrotrophic fungus Cytospora chrysosperma[J]. J Exp Bot, 2018,69(22):5519-5530.DOI: 10.1093/jxb/ery304.
doi: 10.1093/jxb/ery304 pmid: 30124931 |
[121] |
ZHANG Q, LI Y, ZHANG Y, et al. Md-miR156ab and Md-miR395 target WRKY transcription factors to influence apple resistance to leaf spot disease[J]. Front Plant Sci, 2017,8:526.DOI: 10.3389/fpls.2017.00526.
doi: 10.3389/fpls.2017.00526 pmid: 28469624 |
[122] |
ZHANG Y, ZHANG Q, HAO L, et al. A novel miRNA negatively regulates resistance to Glomerella leaf spot by suppressing expression of an NBS gene in apple[J]. Hortic Res, 2019,6:93.DOI: 10.1038/s41438-019-0175-x.
doi: 10.1038/s41438-019-0175-x pmid: 31645951 |
[123] |
ZHOU X, JACOBS T B, XUE L J, et al. Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate:CoA ligase specificity and redundancy[J]. New Phytol, 2015,208(2):298-301.DOI: 10.1111/nph.13470.
doi: 10.1111/nph.13470 pmid: 25970829 |
[124] |
FAN D, LIU T, LI C, et al. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation[J]. Sci Rep, 2015,5:12217.DOI: 10.1038/srep12217.
doi: 10.1038/srep12217 pmid: 26193631 |
[125] |
LIU TT, FAN D, RAN L Y, et al. Highly efficient CRISPR/Cas9-mediated targeted mutagenesis of multiple genes in Populus[J]. Yi Chuan, 2015,37(10):1044-1052.DOI: 10.16288/j.yczz.15-303.
doi: 10.16288/j.yczz.15-303 pmid: 26496757 |
[126] |
NISHITANI C, HIRAI N, KOMORI S, et al. Efficient genome editing in apple using a CRISPR/Cas9 system[J]. Sci Rep, 2016,6:31481.DOI: 10.1038/srep31481.
doi: 10.1038/srep31481 pmid: 27530958 |
[127] |
JIA H, WANG N. Targeted genome editing of sweet orange using Cas9/sgRNA[J]. PLoS One, 2014,9(4):e93806.DOI: 10.1371/journal.pone.0093806.
doi: 10.1371/journal.pone.0093806 pmid: 24710347 |
[128] |
胡春华, 邓贵明, 孙晓玄, 等. 香蕉CRISPR/Cas9基因编辑技术体系的建立[J]. 中国农业科学, 2017,50(7):1294-1301.
doi: 10.3864/j.issn.0578-1752.2017.07.012 |
HU C H, DENG G M, SUN X X, et al. Establishment of an efficient CRISPR/Cas9-mediated gene editing system in banana[J]. Sci Agric Sin, 2017,50(7):1294-1301. | |
[129] |
LIU R, CHEN L, JIANG Y, et al. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system[J]. Cell Discov, 2015,1:15007.DOI: 10.1038/celldisc.2015.7.
doi: 10.1038/celldisc.2015.7 pmid: 27462408 |
[130] |
KATAYAMA T, TANAKA Y, OKABE T, et al. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae[J]. Biotechnol Lett, 2016,38(4):637-642.DOI: 10.1007/s10529-015-2015-x.
doi: 10.1007/s10529-015-2015-x pmid: 26687199 |
[131] |
ZHANG C, MENG X, WEI X, et al. Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus[J]. Fungal Genet Biol, 2016,86:47-57.DOI: 10.1016/j.fgb.2015.12.007.
doi: 10.1016/j.fgb.2015.12.007 pmid: 26701308 |
[132] |
ARAZOE T, MIYOSHI K, YAMATO T, et al. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus[J]. Biotechnol Bioeng, 2015,112(12):2543-2549.DOI: 10.1002/bit.25662.
doi: 10.1002/bit.25662 pmid: 26039904 |
[133] | 郑武, 谷峰. CRISPR/Cas9的应用及脱靶效应研究进展[J]. 遗传, 2015,37(10), 37:1003-1010. |
ZHENG W, GU F. Progress of application and off-target effects of CRISPR/Cas9[J]. Hereditas, 2015,37(10), 37:1003-1010.DOI: 10.16288/j.yczz.15-070. | |
[134] | 周燕燕. 紫玉盘内生真菌Arthrinium sp.次级代谢产物研究[D]. 广州:广东药学院, 2015. |
ZHOU Y Y. Study on secondary metabolites of endophytic fungus Arthrinium sp.from Uvaria microcarpa[D]. Guangzhou:Guangdong Pharmaceutical University, 2015. | |
[135] | 于湘莉, 赵静雅, 张利达, 等. 楸树内生真菌抗癌性能研究[J]. 上海医药, 2012,33(13):49-52. |
YU X L, ZHAO J Y, ZHANG L D, et al. Study on the anti-cancer acitivity of endophytic fungi isolated from Juglans mandshurica Maxim[J]. Shanghai Med Pharm J, 2012,33(13):49-52.DOI: 10.3969/j.issn.1006-1533.2012.13.016. | |
[136] | 刘丽莉, 吕国忠, 孙晓东. 林木内生真菌研究进展[J]. 菌物研究, 2006,4(2):54-59. |
LIU L L, LU G Z, SUN X D. Review of forest-endophytic fungi[J]. J Fungal Res, 2006,4(2):54-59.DOI: 10.13341/j.jfr.2006.02.012. | |
[137] | 李霞, 曹昆, 丛伟. 秤锤树叶片内生真菌的分离鉴定及其对植株生长的影响[J]. 基因组学与应用生物学, 2010,29(1):75-81. |
LI X, CAO K, CONG W. Isolation and identification of endophyte from leaves of Sinojackia xylocarpa and their effect on plant growth[J]. Genom Appl Biol, 2010,29(1):75-81.DOI: 10.3969/gab.029.000075. | |
[138] | 战妍, 王鹤鸣, 周欣, 等. 林木组织内生真菌研究及应用进展[J]. 安徽农业科学, 2014,42(29):10066-10069,10077. |
ZHAN Y, WANG H M, ZHOU X, et al.Research progress and application of trees endophytic fungi[J].J Anhui Agric Sci, 2014, 42(29), 42:10066-10069,10077.DOI: 10.13989/j.cnki.0517-6611.2014.29.008. | |
[139] | 任娜. 红豆杉内生真菌遗传多样性分析及生物转化研究[D]. 长沙:中南大学, 2011. |
REN N. Genetic diversity analysis and biotransformation research among endophytic fungi from Taxus[D]. Changsha:Central South University, 2011. | |
[140] |
ARNOLD A E, MEJÍA L C, KYLLO D, et al. Fungal endophytes limit pathogen damage in a tropical tree[J]. PNAS, 2003,100(26):15649-15654.DOI: 10.1073/pnas.2533483100.
doi: 10.1073/pnas.2533483100 pmid: 14671327 |
[141] | 袁秀英, 白红霞, 白玉明, 等. 杨树内生真菌的分离和拮抗生防菌的筛选[J]. 林业科学研究, 2006,19(6):713-717. |
YUAN X Y, BAI H X, BAI Y M, et al. Isolation of endophytes and screen of antagonistic strains in poplar trees[J]. For Res, 2006,19(6):713-717.DOI: 10.3321/j.issn:1001-1498.2006.06.007. | |
[142] |
BUSBY P E, PEAY K G, NEWCOMBE G. Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity[J]. New Phytol, 2016,209(4):1681-1692.DOI: 10.1111/nph.13742.
doi: 10.1111/nph.13742 pmid: 26565565 |
[143] |
WANG S, GUAN Y, WANG Q, et al. A mycorrhizae-like gene regulates stem cell and gametophore development in mosses[J]. Nat Commun, 2020,11(1):2030.DOI: 10.1038/s41467-020-15967-6.
doi: 10.1038/s41467-020-15967-6 pmid: 32332755 |
[144] |
WATTS-WILLIAMS S J, EMMETT B D, LEVESQUE-TREMBLAY V, et al. Diverse Sorghum bicolor accessions show marked variation in growth and transcriptional responses to arbuscular mycorrhizal fungi[J]. Plant Cell Environ, 2019,42(5):1758-1774.DOI: 10.1111/pce.13509.
doi: 10.1111/pce.13509 pmid: 30578745 |
[145] |
MACHOA P, ZIPFEL C. Plant PRRs and the activation of innate immune signaling[J]. Mol Cell, 2014,54(2):263-272.DOI: 10.1016/j.molcel.2014.03.028.
doi: 10.1016/j.molcel.2014.03.028 pmid: 24766890 |
[146] |
LÓPEZ-RÁEZ J A, SHIRASU K, FOO E. Strigolactones in plant interactions with beneficial and detrimental organisms:The Yin and Yang[J]. Trends Plant Sci, 2017,22(6):527-537.DOI: 10.1016/j.tplants.2017.03.011.
doi: 10.1016/j.tplants.2017.03.011 pmid: 28400173 |
[1] | 李梅, 施季森, 罗建中, 甘四明. 我国桉树遗传育种研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 41-50. |
[2] | 侯静, 毛金燕, 翟惠, 王洁, 尹佟明. CRISPR/Cas技术在木本植物改良中的应用[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 24-30. |
[3] | 苑兆和, 陈立德, 张心慧, 赵玉洁. 果树分子育种研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 1-12. |
[4] | 甘四明. 林木分子育种研究的基因组学信息资源述评[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 1-11. |
[5] | 宋微1,2,孟繁荣3. 落叶松根朽病生理学特性及其拮抗菌的测定[J]. 南京林业大学学报(自然科学版), 2007, 31(01): 67-71. |
[6] | 吴玉柱1,季延平1,赵桂华2,刘慇1,赵海军3,王海明4,牛迎福4. 牡丹根腐病及其防治的研究[J]. 南京林业大学学报(自然科学版), 2005, 29(06): 69-72. |
[7] | 李梅. 杉木育种群体分子遗传变异及分子育种研究[J]. 南京林业大学学报(自然科学版), 2001, 25(05): 39-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||