南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (2): 35-42.doi: 10.12302/j.issn.1000-2006.202008048
何旭东1,2(), 郑纪伟1,2, 孙冲2,3, 何开跃3, 王保松1,2,*()
收稿日期:
2020-08-28
接受日期:
2020-09-25
出版日期:
2021-03-30
发布日期:
2021-04-09
通讯作者:
王保松
基金资助:
HE Xudong1,2(), ZHENG Jiwei1,2, SUN Chong2,3, HE Kaiyue3, WANG Baosong1,2,*()
Received:
2020-08-28
Accepted:
2020-09-25
Online:
2021-03-30
Published:
2021-04-09
Contact:
WANG Baosong
摘要:
【目的】构建杨树与柳树优良品种的指纹图谱,对不同品种进行准确鉴定。【方法】利用柳树EST-SSR标记对33个杨树与柳树优良品种进行通用性检测及基因分型,通过核心引物间的组合构建品种指纹图谱。同时采用非加权组平均法进行聚类,分析各品种间亲缘关系。【结果】12个EST-SSR标记共扩增出97条等位片段,每个位点等位基因数5~13个不等,平均为8.1个。12个位点的多态信息含量(PIC)变化范围为0.637 2~0.834 8,平均为0.781 7。优选的3对核心引物中,SALeSSR0340与SALeSSR0346组合可完全区分12个杨树品种,而SALeSSR0259、SALeSSR0340与SALeSSR0346的组合可完全区分所有的33个品种。聚类分析显示33个品种间的遗传相似系数为0.68~0.96,并分成杨属与柳属两大类,与传统的杨柳科系统分类学一致。各品种间亲缘关系聚类结果与遗传背景相吻合。【结论】对33个杨柳树优良品种进行指纹图谱构建与亲缘关系分析,表明EST-SSR标记可有效反映品种间的差异,建立的基因分型体系准确、高效,可为杨树与柳树品种鉴定、保护与推广工作提供科学依据。
中图分类号:
何旭东,郑纪伟,孙冲,等. 33个杨柳品种指纹图谱构建[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 35-42.
HE Xudong, ZHENG Jiwei, SUN Chong, HE Kaiyue, WANG Baosong. Construction of fingerprints for 33 varieties in Salicaceae[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(2): 35-42.DOI: 10.12302/j.issn.1000-2006.202008048.
表1
试验材料"
编号 code | 品种 variety | 遗传背景 genetic background |
---|---|---|
1 | ‘苏柳172’ Salix × jiangsuensis ‘J172’ | (垂柳×白柳)×旱柳 (S. babylonica × S. alba)× S. matsudana |
2 | ‘苏柳795’ S. × jiangsuensis ‘J795’ | 旱柳×白柳 S. matsudana × S. alba |
3 | ‘苏柳799’ S. × jiangsuensis ‘J799’ | 旱柳×白柳 S. matsudana × S. alba |
4 | ‘苏柳932’ S. × jiangsuensis ‘J932’ | 垂柳×白柳 S. babylonica × S. alba |
5 | ‘苏柳1010’ S. × jiangsuensis ‘J1010’ | 垂柳×白柳 S. babylonica × S. alba |
6 | ‘苏柳1011’ S. × jiangsuensis ‘J1011’ | 垂柳×白柳 S. babylonica × S. alba |
7 | ‘苏柳52-2’ S. × jiangsuensis ‘J52-2’ | 簸箕柳×银柳 S. suchowensis × S. argyracea |
8 | ‘苏柳8-26’ S. × jiangsuensis ‘J8-26’ | 簸箕柳×杞柳 S. suchowensis ×S. integra |
9 | ‘苏柳9-6’ S. × jiangsuensis ‘J9-6’ | 杞柳×簸箕柳 S. integra × S. suchowensis |
10 | ‘苏柳887’ S. × jiangsuensis ‘J887’ | 吐兰柳×银柳 S. turanica × S. argyracea |
11 | ‘苏柳1050’ S. × jiangsuensis ‘J1050’ | 簸箕柳×银柳 S.suchowensis × S. argyracea |
12 | ‘花叶柳’ S. integra ‘Tu Zhongyu’ | 杞柳 S. integra |
13 | ‘竹柳’ ‘Zhuliu’ | 未知 Unknown |
14 | ‘SV1’ | 杂交子代 Salix hybrid |
15 | ‘SX61’ | 龙江柳 S. sachalinensis |
16 | ‘S25’ | 钻石柳 S. eriocephala |
17 | ‘SX64’ | 宫部氏柳 S. miyabeana |
18 | ‘SX67’ | 宫部氏柳 S. miyabeana |
19 | ‘Fish Creek’ | 欧洲红皮柳 S. purpurea |
20 | ‘Onondaga’ | 欧洲红皮柳 S. purpurea |
21 | ‘Otisco’ | 蒿柳 × 宫部氏柳 S. viminalis × S. miyabeana |
22 | ‘南林95’杨 Populus × euramericana ‘Nanlin 95’ | ‘I-69’杨× ‘I-45’ P. deltoides cl. ‘Lux’ ×(P. × euramericana ‘I-45’) |
23 | ‘南林895’杨 P. ×euramericana ‘Nanlin 895’ | ‘I-69’× ‘I-45’ P. deltoides cl. ‘Lux’ ×(P. × euramericana ‘I-45’) |
24 | ‘I-69’杨 P. deltoides ‘I-69’ | 美洲黑杨 P. deltoides |
25 | ‘I-72’杨 P. × euramericana ‘I-72’ | 欧美杨 P. × euramericana |
26 | ‘35’杨 P. deltoides ‘Dvina’ | 美洲黑杨 P. deltoides |
27 | ‘苏杨7号’ P. deltoides ‘Suyang-7’ | ‘I-69’杨实生苗 seedling of ‘I-69’ |
28 | ‘I-107’杨 P. × euramericana ‘Neva’ | 欧美杨 P. × euramericana |
29 | ‘I-108’杨 P. × euramericana ‘I-108’ | 欧美杨 P. × euramericana |
30 | ‘银中’杨 P. alba × P. berolinensis ‘Yinzhong’ | 银白杨×中东杨 P. alba × P. berolinensis |
31 | ‘湘林90’杨 P. deltoides ‘XL-90’ | 50号杨×W07杨 P.deltoides cl. ‘55/65’)×P. deltoides ‘W07’ |
32 | ‘丹红’杨 P. deltoides ‘Danhong’ | 50号杨×36号杨 P. deltoides cl. ‘55 /65’ × P. deltoides ‘2KEN8’ |
33 | ‘巨霸’杨 P. deltoides ‘Juba’ | 50号杨×36号杨 P. deltoides cl. ‘55 /65’ × P. deltoides ‘2KEN8’ |
表2
12对EST-SSR引物信息"
编号 code | 位点 locus | 登录号 accession number | 引物序列 primer sequences | 基序 motif | 期望片段/ bp expected fragment |
---|---|---|---|---|---|
1 | SALeSSR0069 | Pr032826640 | F:TGACCCACAAAGTGAAACAGA R:CTCAGCCAACTCCGAAGAA | (AGG)6 | 151 |
2 | SALeSSR0074 | Pr032826645 | F:TTTCCGTCCAACTCATCTTCT R:AGCAGTCACGAGGCGAACT | (TTTC)4 | 458 |
3 | SALeSSR0108 | Pr032826679 | F:AAGCTGGACCGCATGAAC R:ACGGGCTATGATGGAGGA | (TGG)9 | 378 |
4 | SALeSSR0169 | Pr032826740 | F:CTTCGCATCTCCGTTTCAC R:CGTCGCTTTGGTTCTGGTT | (CCT)6 | 300 |
5 | SALeSSR0259 | Pr032826830 | F:CGCTTTGGGATGACTGATT R:GTTGCTGGAGTGTTTCTTGG | (CAG)6 | 217 |
6 | SALeSSR0264 | Pr032826835 | F:ACAGAAACGCAAGCCTCAA R:AAAGAGCAACTGCCGAGAA | (ACC)9 | 251 |
7 | SALeSSR0279 | Pr032826850 | F:AACTTCATAGCCCATACACCTT R:CCATCAACAACAACCCAAAC | (CTC)5 | 326 |
8 | SALeSSR0296 | Pr032826867 | F:GTGATACTGGCACCTCTTTCC R:TGGGTGGAACTGTTTCTATTGC | (CAG)5 | 275 |
9 | SALeSSR0340 | Pr032826911 | F:TTCATGCCTTTGGCTGTG R:TGTCCTCTTTGCCCGTCT | (ATG)6 | 315 |
10 | SALeSSR0346 | Pr032826917 | F:CACCCGCAAGTTTCCCTA R:CTGCCCTAAAGCCGTTGT | (AGC)7 | 190 |
11 | SALeSSR0696 | Pr032827267 | F:CTTGCTCGTCCCGTAGATT R:ACCAGGAGTGGCAGAAACC | (GCT)5 | 186 |
12 | SALeSSR0939 | Pr032827510 | F:TCACTTCCACCCGCATCA R:AGACCCGAGGTTTCAGACAG | (TCT)7 | 381 |
表3
13对EST-SSR标记多态性检测"
位点 locus | 等位基 因数 number of allele | 等位基 因长度/bp length of allele | 多态信息 含量 PIC |
---|---|---|---|
SALeSSR0069 | 11 | 132~165 | 0.826 2 |
SALeSSR0074 | 7 | 452~488 | 0.766 4 |
SALeSSR0108 | 9 | 338~377 | 0.834 8 |
SALeSSR0169 | 9 | 292~316 | 0.829 8 |
SALeSSR0259 | 8 | 193~229 | 0.819 9 |
SALeSSR0264 | 6 | 233~260 | 0.751 0 |
SALeSSR0279 | 5 | 327~339 | 0.762 8 |
SALeSSR0296 | 6 | 263~284 | 0.637 2 |
SALeSSR0340 | 10 | 290~347 | 0.827 2 |
SALeSSR0346 | 13 | 352~394 | 0.808 5 |
SALeSSR0696 | 6 | 174~189 | 0.755 0 |
SALeSSR0939 | 7 | 351~384 | 0.761 1 |
合计 total | 97 | ||
平均 average | 8.1 | 0.781 7 |
表4
33个杨树与柳树品种的指纹图谱"
品种 varieties | 核心引物 core primers | ||
---|---|---|---|
SALeSSR0259 | SALeSSR0340 | SALeSSR0346 | |
‘苏柳172’ | 211/217 | 314/317 | 352/361/373 |
‘苏柳795’ | 211/214/217 | 317 | 361/382 |
‘苏柳799’ | 211/217 | 317 | 361/382 |
‘苏柳932’ | 193/211 | 314 | 358/373 |
‘苏柳1010’ | 211/217/220 | 314 | 361/373/388 |
‘苏柳1011’ | 211/217/220 | 314 | 361/376/394 |
‘苏柳52-2’ | 217 | 290/311 | 361/382 |
‘苏柳8-26’ | 211/217 | 290/311 | 361/382 |
‘苏柳9-6’ | 211/214 | 290 | 361/382 |
‘苏柳887’ | 214/217 | 290/311 | 358/382 |
‘苏柳1050’ | 217/229 | 347 | 367/394 |
‘花叶柳’ | 214/217 | 293/314 | 358/385 |
‘竹柳’ | 205/217 | 314/317 | 352/361/373 |
‘SV1’ | 205/211 | 290 | 379/388 |
‘SX61’ | 208/220 | 290 | 361/382 |
‘S25’ | 211/214 | 290 | 382/391 |
‘SX64’ | 217/220 | 290/311 | 388 |
‘SX67’ | 208/220 | 290/311 | 364/388 |
‘Fish Creek’ | 208/220 | 311 | 361/376 |
‘Onondaga’ | 214/217 | 290/311 | 361/382 |
‘Otisco’ | 214/217 | 290/311 | 388 |
‘南林95’杨 | 193/208 | 296/311 | 379 |
‘南林895’杨 | 193/208 | 296/314 | 361/379 |
‘I-69’杨 | 208 | 314/317 | 361/382 |
‘I-72’杨 | 208 | 296 | 361/382 |
‘35’杨 | 208 | 296/305 | 361/382 |
‘苏杨7号’ | 193/208 | 314 | 361/382 |
‘I-107’杨 | 208 | 296/311 | 361/382 |
‘I-108’杨 | 208 | 296/314 | 361/382 |
‘银中’杨 | 208 | 329 | 376/385 |
‘湘林90’杨 | 208 | 314/317 | 382 |
‘丹红’杨 | 208 | 299/317 | 361/382 |
‘巨霸’杨 | 208 | 299/317 | 382 |
[1] | YE X, BUSOV V, ZHAO N, et al. Transgenic Populus trees for forest products,bioenergy,and functional genomics[J]. Crit Rev Plant Sci, 2011,30(5):415-434. DOI: 10.1080/07352689.2011.605737. |
[2] | SMART L B, VOLK T A, LIN J, et al. Genetic improvement of shrub willow (Salix spp.) crops for bioenergy and environmental applications in the United States[J]. Unasylva, 2005,56(221):51-55. DOI: 10.1007/978-0-387-70805-8_13. |
[3] | ROCKWOOD D L, NAIDU C V, CARTER D R, et al. Short-rotation woody crops and phytoremediation:opportunities for agroforestry?[J]. Agroforestry Syst, 2004,61:51-63. DOI: 10.1023/B:AGFO.0000028989.72186.e6. |
[4] | PULFORD I D, WATSON C. Phytoremediation of heavy metal-contaminated land by trees: a review[J]. Environ Int, 2003,29(4):529-540. DOI: 10.1016/s0160-4120(02)00152-6. |
[5] | LIU H L, YANG W X, HOU J, et al. Genetic identification of 43 elite clonal accessions of Populus deltoides by SSR fingerprinting[J]. Can J Plant Sci, 2016,96(3):494-502. DOI: 10.1139/cjps-2015-0272. |
[6] | LIESEBACH H, SCHNECK V, EWALD E. Clonal fingerprinting in the genus Populus L.by nuclear microsatellite loci regarding differences between sections,species and hybrids[J]. Tree Genet Genomes, 2010,6(2):259-269. DOI: 10.1007/s11295-009-0246-5. |
[7] | LI F G, GAN S M, ZHANG Z Y, et al. Microsatellite-based genotyping of the commercial Eucalyptus clones cultivated in China[J]. Silvae Genet, 2011,60(5):216-223. DOI: 10.1515/sg-2011-0029. |
[8] | FARIA D A, MAMANI E M C, JR P G J, et al. Genotyping systems for Eucalyptus based on tetra-,penta-,and hexanucleotide repeat EST microsatellites and their use for individual fingerprinting and assignment tests[J]. Tree Genet Genomes, 2011,7(1):63-77. DOI: 10.1007/s11295-010-0315-9. |
[9] | POLLEGIONI P, WOESTE K, MUGNOZZA G S, et al. Retrospective identification of hybridogenic walnut plants by SSR fingerprinting and parentage analysis[J]. Mol Breed, 2009,24(4):321-335. DOI: 10.1007/s11032-009-9294-7. |
[10] | MANTIA L, LAIN T, CARUSO T, et al. SSR-based DNA fingerprints reveal the genetic diversity of Sicilian olive (Olea europaea L.) germplasm[J]. J Hortic Sci Biotechnol, 2005,80(5):628-632. DOI: 10.1080/14620316.2005.11511989. |
[11] | MADHOU M, NORMAND F, BAHORUN T, et al. Fingerprinting and analysis of genetic diversity of Litchi (Litchi chinensis Sonn.) accessions from different germplasm collections using microsatellite markers[J]. Tree Genet Genomes, 2013,9(2):387-396. DOI: 10.1007/s11295-012-0560-1. |
[12] | TAN L Q, PENG M, XU L Y, et al. Fingerprinting 128 Chinese clonal tea cultivars using SSR markers provides new insights into their pedigree relationships[J]. Tree Genet Genomes, 2015,11(5):1-12. DOI: 10.1007/s11295-015-0914-6. |
[13] | 荣浩, 黄彬, 周琦, 等. 61个观赏海棠品种的SSR指纹图谱构建及遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2018,42(3):45-50. |
RONG H, HUANG B, ZHOU Q, et al. The construction of fingerprints and genetic diversity analysis of 61 Malus crabapple cultivars based on SSR markers[J]. J Nanjing For Univ (Nat Sci Ed), 2018,42(3):45-50. DOI: 10.3969/j.issn.1000-2006.201801004. | |
[14] | 段一凡, 王贤荣, 梁丽丽, 等. 桂花品种SSR荧光指纹图谱的构建[J]. 南京林业大学学报(自然科学版), 2014,38(S1):1-6. |
DUAN Y F, WANG X R, LIANG L L, et al. Fingerprinting and identification of Osmanthus fragrans cultivars using fluorescence-labeled SSR markers[J]. J Nanjing For Univ (Nat Sci Ed), 2014,38(S1):1-6. DOI: 10.3969/j.issn.1000-2006.2014.S1.001. | |
[15] | TUSKAN G A, DIFAZIO S, JANSSON S, et al. The genome of black cottonwood,Populus trichocarpa (Torr.& Gray)[J]. Science, 2006,313(5793):1596-1604. DOI: 10.1126/science.1128691. |
[16] | MA T, WANG J, ZHOU G, et al. Genomic insights into salt adaptation in a desert poplar[J]. Nat Commun, 4(1):2797. DOI: 10.1038/ncomms3797. |
[17] | DAI X, HU Q, CAI Q, et al. The willow genome and divergent evolution from poplar after the common genome duplication[J]. Cell Res, 2014,24(10):1274. DOI: 10.1038/cr.2014.83. |
[18] | WEI S Y, YANG Y H, YIN T M. The chromosome-scale assembly of the willow genome provides insight into Salicaceae genome evolution[J]. Hortic Res, 7(1):45. DOI: 10.1038/s41438-020-0268-6. |
[19] | DU F K, XU F, QU H, et al. Exploiting the transcriptome of Euphrates Poplar,Populus euphratica (Salicaceae) to develop and characterize new EST-SSR markers and construct an EST-SSR database[J]. PLoS One, 2013,8(4):e61337. DOI: 10.1371/journal.pone.0061337. |
[20] | TIAN X Y, ZHENG J W, JIAO Z Y, et al. Transcriptome sequencing and EST-SSR marker development in Salix babylonica and S.suchowensis[J]. Tree Genet Genomes, 2019,15(1):1-13. DOI: 10.1007/s11295-018-1315-4. |
[21] | 王源秀, 徐立安, 黄敏仁. 杞柳和簸箕柳候选杂交亲本SSR指纹分析[J]. 南京林业大学学报(自然科学版), 2008,32(2):1-5. |
WANG Y X, XU L A, HUANG M R. Analysis of fingerprinting of Salix intagra Thunb and Salix suchowensis Cheng using microsatellite (SSR) markers[J]. J Nanjing For Univ (Nat Sci Ed), 2008,32(2):1-5. DOI: 10.3969/j.issn.1000-2006.2008.02.001. | |
[22] | 郑纪伟, 孙冲, 周洁, 等. 柳树DNA提取改良方法研究[J]. 江苏林业科技, 2014,41(6):4-6,58. |
ZHENG J W, SUN C, ZHOU J, et al. A modified method of DNA extraction from Salix[J]. J Jiangsu For Sci Technol, 2014,41(6):4-6,58. DOI: 10.3969/j.issn.1001-7380.2014.06.002. | |
[23] | ELLIS J R, BURKE J M. EST-SSRs as a resource for population genetic analyses[J]. Heredity (Edinb), 2007,99(2):125-132. DOI: 10.1038/sj.hdy.6801001. |
[24] | GASIC K, HAN Y P, KERTBUNDIT S, et al. Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species[J]. Mol Breed, 2009,23(3):397-411. DOI: 10.1007/s11032-008-9243-x. |
[25] | YADAV H K, RANJAN A, ASIF M H, et al. EST-derived SSR markers in Jatropha curcas L.development,characterization,polymorphism,and transferability across the species/genera[J]. Tree Genet Genomes, 2011,7(1):207-219. DOI: 10.1007/s11295-010-0326-6. |
[26] | ZORRILLA-FONTANESI Y, CABEZA A, TORRES A M, et al. Development and Bin mapping of strawberry genic-SSRs in diploid Fragaria and their transferability across the Rosoideae subfamily[J]. Mol Breed, 2011,27(2):137-156. DOI: 10.1007/s11032-010-9417-1. |
[27] | SAVADI S B, FAKRUDIN B, NADAF H L, et al. Transferability of Sorghum genic microsatellite markers to peanut[J]. Am J Plant Sci, 2012,3(9):1169-1180. DOI: 10.4236/ajps.2012.39142. |
[28] | TUSKAN G A, GUNTER L E, YANG Z K, et al. Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa[J]. Can J For Res, 2004,34(1):85-93. DOI: 10.1139/x03-283. |
[29] | 杨彦伶, 张亚东, 张新叶. 杨树SSR标记在柳树中的通用性分析[J]. 分子植物育种, 2008,6(6):1134-1138. |
YANG Y L, ZHANG Y D, ZHANG X Y. Transferability analysis of Populus SSR markers in Salix[J]. Mol Plant Breed, 2008,6(6):1134-1138. DOI: 10.3969/j.issn.1672-416X.2008.06.018. | |
[30] | 韩骞, 王辉, 王进茂, 等. 利用SSR引物通用性分析杨柳科树种遗传多样性[J]. 分子植物育种, 2009,7(5):904-911. |
HAN Q, WANG H, WANG J M, et al. Genetic diversity analysis of Salicaceae cultivars by transferablity of SSR primers[J]. Mol Plant Breed, 2009,7(5):904-911. DOI: 10.3969/mpb.007.000904. | |
[31] | 涂忠虞. 柳树育种与栽培[M]. 南京: 江苏科学技术出版社, 1982. |
TU Z Y. Breeding and cultivation of Salix[M]. Nanjing: Jiangsu Science and Technology Press, 1982. | |
[32] | 冯锦霞, 张川红, 郑勇奇, 等. 利用荧光SSR标记鉴别杨树品种[J]. 林业科学, 2011,47(6):167-174. |
FENG J X, ZHANG C H, ZHENG Y Q, et al. Identification of poplar varieties by SSR markers using capillary electrophoresis with fluorescence detection[J]. Sci Silvae Sin, 2011,47(6):167-174. | |
[33] | 贾会霞, 姬慧娟, 胡建军, 等. 杨树新品种的SSR指纹图谱构建和倍性检测[J]. 林业科学, 2015,51(2):69-79. |
JIA H X, JI H J, HU J J, et al. Fingerprints of SSR markers and ploidy detection for new Populus varieties[J]. Sci Silvae Sin, 2015,51(2):69-79. DOI: 10.11707/j.1001-7488.20150209. | |
[34] | 郑纪伟, 教忠意, 窦全琴, 等. 利用荧光SSR标记构建含笑种质指纹图谱[J]. 分子植物育种, 2018,16(14):4705-4714. |
ZHENG J W, JIAO Z Y, DOU Q Q, et al. Construction of fingerprint of Michelia germplasm by fluorescent SSR markers[J]. Mol Plant Breed, 2018,16(14):4705-4714. DOI: 10.13271/j.mpb.016.004705. | |
[35] | 贾会霞, 吴立栓, 胡建军, 等. 柳树种质资源遗传多样性和亲缘关系的CE-AFLP分析[J]. 林业科学, 2013,49(6):37-44. |
JIA H X, WU L S, HU J J, et al. Genetic diversity and genetic relationship of Salix germplasms revealed by CE-AFLP analysis[J]. Sci Silvae Sin, 2013,49(6):37-44. DOI: 10.11707/j.1001-7488.20130606. |
[1] | 颜铮明, 阮宏华, 廖家辉, 石珂, 倪娟平, 曹国华, 沈彩芹, 丁学农, 赵小龙, 庄鑫. 不同林龄杨树人工林地表甲虫群落多样性特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 236-242. |
[2] | 教忠意, 田雪瑶, 郑纪伟, 王保松, 何开跃, 何旭东. 灌木柳耐盐SNP位点的快速鉴定与标记开发[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 107-113. |
[3] | 王欢利, 严灵君, 黄犀, 王仲伟, 汤诗杰. 南京椴群体遗传多样性和遗传结构分析[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 145-153. |
[4] | 刘亚梅, 刘盛全, 周亮, 胡建军, 赵自成, 郑向丽. 8个杨树无性系/品种木材解剖特征及其径向变异模式[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 234-240. |
[5] | 何旭东, 隋德宗, 王红玲, 黄瑞芳, 郑纪伟, 王保松. 中国柳树遗传育种研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 51-63. |
[6] | 张庆源, 田野, 王淼, 翟政, 周诗朝. 美洲黑杨与青杨杂交F1代苗期表型性状的分化及其类型划分[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 40-48. |
[7] | 冯一宁, 李因刚, 祁铭, 周鹏燕, 周琦, 董乐, 徐立安. 基于SSR标记的福建省闽楠代表性群体遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 102-108. |
[8] | 李丹丹, 翁启杰, 甘四明, 周长品, 黄世能, 李梅. 基于EST-SSR标记鉴定猴耳环自由授粉的全同胞子代[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 95-101. |
[9] | 程强, 赵丽娟. 柳树痂囊腔菌的基因组测序和比较基因组分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 143-150. |
[10] | 崔皓, 韩建刚, 郭俨辉, 季淮, 朱咏莉, 李萍萍. 洪泽湖河湖交汇区典型杨树人工林碳通量月尺度变化特征[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 19-26. |
[11] | 袁金玲, 马婧瑕, 钟远标, 岳晋军. 基于SSR标记的丛生竹杂种鉴定、遗传分析和指纹图谱构建[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 10-18. |
[12] | 王润松, 徐涵湄, 曹国华, 沈彩芹, 阮宏华. 施用沼液对杨树人工林细根形态特征的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 119-124. |
[13] | 王立超, 陈凤毛, 仇才楼, 唐进根, 丁学农, 任吉星. 坡面方胸材小蠹鉴定与风险分析[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 201-208. |
[14] | 王润松, 孙源, 徐涵湄, 曹国华, 沈彩芹, 阮宏华. 施用沼液对杨树人工林细根生物量的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 123-129. |
[15] | 马永春, 佘诚棋, 方升佐. 不同修枝方法对杨树人工林生长、光合叶面积和主干饱满度的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 137-142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||