南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (3): 143-151.doi: 10.12302/j.issn.1000-2006.202004009
陈宏健1(), 郝德君1,*(), 田敏2, 周杨1, 夏小洪1, 赵欣怡1, 乔恒1, 谈家金1
收稿日期:
2020-04-07
修回日期:
2021-01-18
出版日期:
2021-05-30
发布日期:
2021-05-31
通讯作者:
郝德君
基金资助:
CHEN Hongjian1(), HAO Dejun1,*(), TIAN Min2, ZHOU Yang1, XIA Xiaohong1, ZHAO Xinyi1, QIAO Heng1, TAN Jiajin1
Received:
2020-04-07
Revised:
2021-01-18
Online:
2021-05-30
Published:
2021-05-31
Contact:
HAO Dejun
摘要:
【目的】了解室内饲养松墨天牛(Monochamus alternatus)幼虫前、中、后肠段细菌的群落结构,比较不同肠段之间菌群多样性和优势菌群的差异,为揭示肠道细菌在松墨天牛获取营养、克服寄主植物化学防御的机理提供参考。【方法】分别提取室内饲养的松墨天牛4龄幼虫前、中、后肠各3组样本(每组5个前肠、5个中肠、5个后肠)的肠道DNA。利用Illumina HiSeq技术对松墨天牛幼虫肠道细菌的16S rDNA V3-V4区序列进行文库构建和高通量测序。原始序列使用Trimmomatic软件和FLASH软件分别进行质控和拼接。利用USEARCH软件对序列进行操作分类单元(OTUs)聚类,统计OTUs数量并绘制Venn图。在门和属分类水平上统计各样本的群落组成及物种丰度情况。通过Alpha多样性和Beta多样性分析反映不同样本的菌群多样性和相似性。采用PICRUSt软件预测松墨天牛幼虫肠道细菌映射到KEGG数据库上的功能,探究不同肠段细菌群落发挥的潜在功能。【结果】共获得643 404条高质量序列,在97% 相似度下将其聚类为1 614个操作分类单元(OTUs),共注释到35门、63纲、137目、250科、554属和844种。前肠OTUs最少,后肠OTUs最多,每个肠段的OTUs组成上既有相似性,也存在差异性。变形菌门(Proteobacteria)为3个肠段中最优势门;葡糖杆菌属(Gluconobacter)为前肠中最优势属,沙雷氏菌属(Serratia)为中肠的最优势属,葡糖杆菌属和沙雷氏菌属同为后肠的最优势属。Alpha多样性显示中、后肠群落多样性更丰富;Beta多样性分析表明,3个肠段的细菌群落组成存在差异,但中肠与后肠的群落组成较相近。功能预测表明,整个肠道菌群中代谢功能丰度最高,其中以糖类代谢和氨基酸代谢为主,这些功能集中在中、后肠。【结论】本实验中菌群功能是基于PICRUSt软件预测的结果,松墨天牛幼虫室内种群的前、中、后肠的细菌群落结构及不同肠段细菌的潜在功能存在差异,是由于不同肠段内的理化性质差异及其在消化中发挥的不同功能所致。肠道细菌与松墨天牛幼虫形成一个共生功能体,菌群在协助幼虫代谢物质、获取营养以及克服寄主植物化学防御方面发挥着重要作用。
中图分类号:
陈宏健,郝德君,田敏,等. 室内饲养松墨天牛幼虫不同肠段细菌的群落结构及功能分析[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 143-151.
CHEN Hongjian, HAO Dejun, TIAN Min, ZHOU Yang, XIA Xiaohong, ZHAO Xinyi, QIAO Heng, TAN Jiajin. The community structure and functional analysis of intestinal bacteria in Monochamus alternatus larvae reared indoors[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(3): 143-151.DOI: 10.12302/j.issn.1000-2006.202004009.
表2
松墨天牛幼虫前、中、后肠细菌KEGG一级通路丰度"
通路 pathway | 前肠 foregut | 中肠 midgut | 后肠 hindgut |
---|---|---|---|
代谢metabolism | 13 990 372±1 103 577 a | 17 240 915±1 247 477 b | 20 148 649±883 626 c |
遗传信息处理genetic information processing | 5 000 704±482 848 a | 6 357 258±193 132 b | 7 039 882±250 234 b |
环境信息处理environmental information processing | 3 716 430±486 525 a | 7 037 731±938 167 b | 6 716 648±568 187 b |
未分类unclassified | 4 266 349±412 853 a | 6 414 041±546 080 b | 6 423 360±402 570 b |
细胞过程cellular processes | 1 015 087±118945 a | 1 571 432±111 916 b | 1 807 915±186 670 b |
人类疾病human diseases | 349 838±31 995 a | 422 246±16 784 b | 482 651±26 077 b |
组织系统organismal systems | 174 781±11 310 a | 198 678±15 455 a | 285 157±15 612 b |
无none | 41 293±5 530 a | 64 819±2 665 b | 75 177±6 040 b |
表3
松墨天牛幼虫前、中、后肠细菌KEGG二级通路(代谢通路)丰度"
通路名称 pathway name | 前肠 foregut | 中肠 midgut | 后肠 hindgut |
---|---|---|---|
糖类代谢carbohydrate metabolism | 2 828 428±216 272 a | 3 776 907±401 272 b | 4 068 723±191 061 b |
氨基酸代谢amino acid metabolism | 2 831 166±219 290 a | 3 324 852±253 667 a | 4 115 552±192 972 b |
能量代谢energy metabolism | 1 449 700±138 218 a | 1 930 392±108 086 b | 2 235 687±118 375 b |
辅助因子和维生素代谢metabolism of cofactors and vitamins | 1 276 600±112 883 a | 1 600 355±74 970 b | 1 796 216±78 097 b |
核苷酸代谢nucleotide metabolism | 1 082 824±101 719 a | 1 271 779±19 364 b | 1 413 572±35 321 b |
脂质代谢lipid metabolism | 1 014 252±80 844 a | 1 160 883±72 565 a | 1 464 629±66 502 b |
外源化学物质生物降解与代谢xenobiotics biodegradation and metabolism | 949 974±63 240 a | 819 476±91 626 a | 1 306 106±80 527 b |
聚糖生物合成与代谢glycan biosynthesis and metabolism | 667 163±64 518 a | 977 012±38 056 b | 954 607±54 898 b |
酶家族enzyme families | 575 528±49 754 a | 794 050±67 197 b | 858 588±43 556 b |
其他氨基酸代谢metabolism of other amino acids | 560 759±40 856 a | 679 610±60 839 a | 806 025±39 359 b |
萜类和聚酮类化合物代谢metabolism of terpenoids and polyketides | 515 618±33 695 a | 659 740±78 983 b | 797 279±40 177 c |
其他次生代谢产物生物合成biosynthesis of other secondary metabolites | 238 360±18 389 a | 245 860±25 526 a | 331 665±18 009 b |
[1] |
BASSET Y, CIZEK L, CUÉNOUD P, et al. Arthropod diversity in a tropical forest[J]. Science, 2012,338(6113):1481-1484. DOI: 10.1126/science.1226727.
doi: 10.1126/science.1226727 |
[2] | 杨红, 黄勇平. 昆虫微生物组:昆虫健康和适应的守护者[J]. 微生物学报, 2018,58(6):961-963. |
YANG H, HUANG Y P. Insect microbiome:as guardians of insect health and adaptation[J]. Acta Microbiol Sin, 2018,58(6):961-963. DOI: 10.13343/j.cnki.wsxb.20186000. | |
[3] |
DICKE M, CUSUMANO A, POELMAN E H. Microbial symbionts of parasitoids[J]. Annu Rev Entomol, 2020,65:171-190. DOI: 10.1146/annurev-ento-011019-024939.
doi: 10.1146/annurev-ento-011019-024939 |
[4] |
DILLON R J, DILLON V M. The gut bacteria of insects:nonpathogenic interactions[J]. Annu Rev Entomol, 2004,49:71-92. DOI: 10.1146/annurev.ento.49.061802.123416.
doi: 10.1146/annurev.ento.49.061802.123416 |
[5] |
DOUGLAS A E. The microbial dimension in insect nutritional ecology[J]. Funct Ecol, 2009,23(1):38-47. DOI: 10.1111/j.1365-2435.2008.01442.x.
doi: 10.1111/fec.2009.23.issue-1 |
[6] |
COLMAN D R, TOOLSON E C, TAKACS-VESBACH C D. Do diet and taxonomy influence insect gut bacterial communities?[J]. Mol Ecol, 2012,21(20):5124-5137. DOI: 10.1111/j.1365-294x.2012.05752.x.
doi: 10.1111/mec.2012.21.issue-20 |
[7] |
ENGEL P, MORAN N A. The gut microbiota of insects-diversity in structure and function[J]. FEMS Microbiol Rev, 2013,37(5):699-735. DOI: 10.1111/1574-6976.12025.
doi: 10.1111/1574-6976.12025 |
[8] |
CEJA-NAVARRO J A, NGUYEN N H, KARAOZ U, et al. Compartmentalized microbial composition,oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus[J]. Isme J, 2014,8(1):6-18. DOI: 10.1038/ismej.2013.134.
doi: 10.1038/ismej.2013.134 |
[9] | 梅承, 范硕, 杨红. 昆虫肠道微生物分离培养策略及研究进展[J]. 微生物学报, 2018,58(6):985-994. |
MEI C, FAN S, YANG H. The strategies of isolation of insect gut microorganisms[J]. Acta Microbiol Sin, 2018,58(6):985-994. DOI: 10.13343/j.cnki.wsxb.20180134
doi: 10.13343/j.cnki.wsxb.20180134 |
|
[10] |
CALDERÓN-CORTÉS N, QUESADA M, WATANABE H, et al. Endogenous plant cell wall digestion:a key mechanism in insect evolution[J]. Annu Rev Ecol Evol Syst, 2012,43(1):45-71. DOI: 10.1146/annurev-ecolsys-110411-160312.
doi: 10.1146/annurev-ecolsys-110411-160312 |
[11] |
ZHOU J P, HUANG H Q, MENG K, et al. Molecular and biochemical characterization of a novel xylanase from the symbiotic Sphingobacterium sp.TN19[J]. Appl Microbiol Biotechnol, 2009,85(2):323-333. DOI: 10.1007/s00253-009-2081-x.
doi: 10.1007/s00253-009-2081-x |
[12] |
GEIB S M, JIMENEZ-GASCO MDEL M, CARLSON J E, et al. Effect of host tree species on cellulase activity and bacterial community composition in the gut of larval Asian longhorned beetle[J]. Environ Entomol, 2009,38(3):686-699. DOI: 10.1603/022.038.0320.
doi: 10.1603/022.038.0320 |
[13] | RAFFA K F, AUKEMA B H, ERBILGIN N, et al. Interactions among conifer terpenoids and bark beetles across multiple levels of scale:an attempt to understand links between population patterns and physiological processes[J]. Chemical Ecology and Phytochemistry of Forest Ecosystems, 2005,39:79-118. DOI: 10.1016/S0079-9920(05)80005-X. |
[14] |
ADAMS A S, AYLWARD F O, ADAMS S M, et al. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism[J]. Appl Environ Microbiol, 2013,79(11):3468-3475. DOI: 10.1128/aem.00068-13.
doi: 10.1128/AEM.00068-13 |
[15] |
BERASATEGUI A, SALEM H, PAETZ C, et al. Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness[J]. Mol Ecol, 2017,26(15):4099-4110. DOI: 10.1111/mec.14186.
doi: 10.1111/mec.2017.26.issue-15 |
[16] | 郝德君, 杨剑霞, 戴华国. 松墨天牛化学生态学[J]. 生态学杂志, 2008,27(7):1227-1233. |
HAO D J, YANG J X, DAI H G. Research prowess and prospect on chemical ecology of Monochamus alternatus[J]. Chin J Ecol, 2008,27(7):1227-1233. | |
[17] | 叶建仁. 松材线虫病在中国的流行现状、防治技术与对策分析[J]. 林业科学, 2019,55(9):1-10. |
YE J R. Epidemic status of pine wilt disease in China and its prevention and control techniques and counter measures[J]. Sci Silvae Sin, 2019,55(9):1-10. DOI: 10.11707/j.1001-7488.20190901. | |
[18] |
LI Y L, ZHENG C Y, LIU K C, et al. Transformation of multi-antibiotic resistant Stenotrophomonas maltophilia with GFP gene to enable tracking its survival on pine trees[J]. Forests, 2019,10(3):231. DOI: 10.3390/f10030231.
doi: 10.3390/f10030231 |
[19] | 萧刚柔. 中国森林昆虫[M].2版(增订本). 北京: 中国林业出版社, 1992. |
XIAO G R. Forest insects of China[M].2nd ed. Beijing: China Forestry Publishing House, 1992. | |
[20] | HU X, LI M, RAFFA K F, et al. Bacterial communities associated with the pine wilt disease vector Monochamus alternatus (Coleoptera:Cerambycidae) during different larval instars[J]. J Insect Sci, 2017,17(6):115. DOI: 10.1093/jisesa/iex089. |
[21] |
KIM J M, CHOI M Y, KIM J W, et al. Effects of diet type,developmental stage,and gut compartment in the gut bacterial communities of two Cerambycidae species (Coleoptera)[J]. J Microbiol, 2017,55(1):21-30. DOI: 10.1007/s1227-017-6561-x.
doi: 10.1007/s12275-017-6561-x |
[22] |
CHEN H J, HAO D J, WEI Z Q, et al. Bacterial communities associated with the pine wilt disease insect vector Monochamus alternatus (Coleoptera:Cerambycidae) during the larvae and pupae stages[J]. Insects, 2020,11(6):376. DOI: 10.3390/insects11060376.
doi: 10.3390/insects11060376 |
[23] | 陈瑞旭, 王露洁, 林涛, 等. 松墨天牛的人工饲育技术研究[J]. 南京林业大学学报(自然科学版), 2017,41(1):199-202. |
CHEN R X, WANG L J, LIN T, et al. Rearing techniques of Monochamus alternatus Hope (Coleoptera:Cerambycidae) on artificial diets[J]. J Nanjing For Univ (Nat Sci Ed), 2017,41(1):199-202. DOI: 10.3969/j.issn.1000-2006.2017.01.031. | |
[24] | 丁森, 王焱, 陆蓝翔, 等. 一株促生抗病的樱花内生细菌的分离、筛选和鉴定[J]. 南京林业大学学报(自然科学版), 2019,62(5):81-88. |
DING S, WANG Y, LU L X, et al. Isolation,screening and identification of an endophytic bacteria in Ceresas with resistance to Agrobacterium tumefaciens and phosphorus solubilizing ability[J]. J Nanjing For Univ (Nat Sci Ed), 2019,62(5):81-88. DOI: 10.3969/j.issn.1000-2006.201802023. | |
[25] | 寇晓琳, 谢楠, 吴彩娥, 等. 青钱柳产黄酮类物质真菌的分离与鉴定[J]. 南京林业大学学报(自然科学版), 2020,44(2):26-34. |
KOU X L, XIE N, WU C E, et al. Isolation and identification of endophytic fungi from Cyclocarya paliurus (Batal.)Iljinskaja[J]. J Nanjing For Univ (Nat Sci Ed), 2020,44(2):26-34. DOI: 10.3969/j.issn.1000-2006.201812001. | |
[26] |
MAGOC T, SALZBERG S L. Flash:fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011,27(21):2957-2963. DOI: 10.1093/bioinformatics/btr507.
doi: 10.1093/bioinformatics/btr507 |
[27] |
EDGAR R C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013,10(10):996-998. DOI: 10.1038/nmeth.2604.
doi: 10.1038/nmeth.2604 |
[28] |
WANG Q, GARRITY G M, TIEDJE J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Appl Environ Microbiol, 2007,73(16):5261-5267. DOI: 10.1128/aem.00062-07.
doi: 10.1128/AEM.00062-07 |
[29] |
SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur:open-source,platform-independent,community-supported software for describing and comparing microbial communities[J]. Appl Environ Microbiol, 2009,75(23):7537-7541. DOI: 10.1128/aem.01541-09.
doi: 10.1128/AEM.01541-09 |
[30] |
LANGILLE M G, ZANEVELD J, CAPORASO J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nat Biotechnol, 2013,31(9):814-821. DOI: 10.1038/nbt.2676.
doi: 10.1038/nbt.2676 |
[31] |
LEMKE T, STINGL U, EGERT M, et al. Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae)[J]. Appl Environ Microbiol, 2003,69(11):6650-6658. DOI: 10.1128/aem.69.11.6650-6658.2003.
doi: 10.1128/AEM.69.11.6650-6658.2003 |
[32] | CHAPMAN R F, SIMPSON S J, DOUGLAS A E. The Insects:structure and function.[M]. 5th Ed. Cambridge: Cambridge University Press, 2013. |
[33] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
DONG X Z, CAI M Y. Common bacterial system identification manual[M]. Beijing: Science Press, 2001. | |
[34] | 冯静, 施庆珊, 欧阳友生, 等. 葡糖杆菌属分类及其主要应用的研究进展[J]. 微生物学杂志, 2010,30(2):86-90. |
FENG J, SHI Q S, OUYANG Y S, et al. Advance in classification and main application of Gluconobacter[J]. J Microbiol, 2010,30(2):86-90. DOI: 10.3969/j.issn.1005-7021.2010.02.018. | |
[35] | VICENTE C S, NASCIMENTO F X, ESPADA M, et al. Characterization of bacterial communities associated with the pine sawyer beetle Monochamus galloprovincialis,the insect vector of the pinewood nematode Bursaphelenchus xylophilus[J]. FEMS Microbiol Lett, 2013,347(2):130-139. DOI: 10.1111/1574-6968.12232. |
[36] |
ZHAO L, MOTA M, VIEIRA P, et al. Interspecific communication between pinewood nematode,its insect vector,and associated microbes[J]. Trends Parasitol, 2014,30(6):299-308. DOI: 10.1016/j.pt.2014.04.007.
doi: 10.1016/j.pt.2014.04.007 |
[37] |
DOUGLAS A E. Multiorganismal insects:diversity and function of resident microorganisms[J]. Annu Rev Entomol, 2015,60(1):17-34. DOI: 10.1146/annurev-ento-010814-020822.
doi: 10.1146/annurev-ento-010814-020822 |
[38] | 魏舸, 白亮, 曲爽, 等. 昆虫共生微生物在病虫害和疾病控制上的应用前景[J]. 微生物学报, 2018,58(6):1090-1102. |
WEI G, BAI L, QU S, et al. Insect microbiome and their potential application in the insect pest and vector-borne disease control[J]. Acta Microbiol Sin, 2018,58(6):1090-1102.DOI: 10.13343/j.cnki.wsxb.20180028. | |
[39] | 徐丽丽, 郑华英, 解春霞, 等. 管氏肿腿蜂寄生对松墨天牛幼虫体质量和营养物质含量的影响[J]. 江苏林业科技, 2019,46(2):13-16. |
XU L L, ZHENG H Y, XIE C X, et al. Effects of parasitization by Sclerodermus guani (Hymenoptera: Bethylidae) on body weight and nutrient content of Monochamus alternatus (Coleoptera:Cerambycidae) larvae[J]. Journal of Jiangsu Forestry Science & Technology, 2019,46(2):13-16. DOI: 10.3969/j.issn.1001-7380.2019.02.004. | |
[40] |
ADAMS L, BOOPATHY R. Isolation and characterization of enteric bacteria from the hindgut of Formosan termite[J]. Bioresour Technol, 2005,96(14):1592-1598. DOI: 10.1016/j.biortech.2004.12.020.
doi: 10.1016/j.biortech.2004.12.020 |
[41] |
HOWE M, KEEFOVER-RING K, RAFFA K F. Pine engravers carry bacterial communities whose members reduce concentrations of host monoterpenes with variable degrees of redundancy,specificity,and capability[J]. Environ Entomol, 2018,47(3):638-645. DOI: 10.1093/ee/nvy032.
doi: 10.1093/ee/nvy032 |
[42] | 胡霞, 傅慧静, 李俊楠, 等. 松墨天牛幼虫肠道纤维素降解细菌的分离与鉴定[J]. 福建农林大学学报(自然科学版), 2018,47(3):322-328. |
HU X, FU H J, LI J N, et al. Isolation and identification of cellulolytic bacteria associated with the gut of Monochamus alternatus larvae[J]. J Fujian Agric For Univ (Nat Sci Ed), 2018,47(3):322-328. DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2018.03.009. | |
[43] |
CHEN S L, SUN S, ZHONG C Y, et al. Bioconversion of lignocellulose and simultaneous production of cellulase,ligninase and bioflocculants by Alcaligenes faecalis-X3[J]. Process Biochem, 2020,90:58-65. DOI: 10.1016/j.procbio.2019.11.008.
doi: 10.1016/j.procbio.2019.11.008 |
[1] | 范明阳, 胡萌, 杨园, 方炎明. 中国东部地区马尾松与黄山松群落分类及群落结构和物种多样性特征[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 47-58. |
[2] | 颜铮明, 阮宏华, 廖家辉, 石珂, 倪娟平, 曹国华, 沈彩芹, 丁学农, 赵小龙, 庄鑫. 不同林龄杨树人工林地表甲虫群落多样性特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 236-242. |
[3] | 尹世轩, 吴永波, 黄潇宇. 常州市金坛生态红线区鸟类多样性研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 219-225. |
[4] | 郭丽丽, 张晨洁, 王菲, 沈佳佳, 张凯月, 何丽霞, 郭琪, 侯小改. 牡丹野生种根际土壤细菌群落特征分析[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 45-55. |
[5] | 王立超, 陈凤毛, 董晓燕, 田成连, 王洋. 松墨天牛取食和产卵特性研究[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 219-224. |
[6] | 王立超, 苏胜荣, 陈凤毛, 董晓燕, 田成连, 王洋. 黄山马尾松林天牛及携带线虫种类初步调查[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 29-35. |
[7] | 王磊, 叶建仁, 史丽娜. 利用腐生线虫加速替代疫木中松材线虫种群数量研究[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 36-44. |
[8] | 伊贤贵, 董鹏, 谢春平, 彭智奇, 杨国栋, 董京京, 钟育谦, 翟飞飞, 王贤荣. 江苏宜兴龙池山自然保护区固定样地物种组成分析[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 159-168. |
[9] | 王玄, 崔鹏, 丁晶晶, 常青. 江苏南部沿海越冬水鸟群落结构及多样性分析[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 178-184. |
[10] | 朱晗, 郝德君, 魏原芝, 孙丽昕, 文全民. 仁扇舟蛾幼虫肠道可培养细菌群落结构分析[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 171-176. |
[11] | 王树梅, 王波, 范少辉, 肖箫, 夏雯, 官凤英. 带状采伐对毛竹林土壤细菌群落结构及多样性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 60-68. |
[12] | 陈秀波, 段文标, 陈立新, 朱德全, 赵晨晨, 刘东旭. 小兴安岭3种原始红松混交林土壤nirK型反硝化微生物群落特征[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 77-86. |
[13] | 周永晟, 徐子恒, 袁发银, 尚旭岚, 孙操稳, 方升佐. 亚热带3个地点青钱柳群落特征比较[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 29-35. |
[14] | 潘婷婷, 陈林, 杨国栋, 伊贤贵, 王贤荣. 南京北部郊野森林群落物种多样性及其环境解释[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 48-54. |
[15] | 王洋, 陈军, 陈凤毛, 周权, 周立峰, 孙守慧. 松墨天牛取食期间传播松材线虫的特性[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||