南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (4): 1-12.doi: 10.12302/i.issn.1000-2006.202102015
收稿日期:
2021-02-20
接受日期:
2021-05-26
出版日期:
2021-07-30
发布日期:
2021-07-30
基金资助:
YUAN Zhaohe(), CHEN Lide, ZHANG Xinhui, ZHAO Yujie
Received:
2021-02-20
Accepted:
2021-05-26
Online:
2021-07-30
Published:
2021-07-30
摘要:
我国是果树产业第一大国,具有丰富的果树品种资源。随着市场需求和自然环境的变化,我国果树产业中出现了一些新问题和新需求亟待解决。深入研究和系统分析我国果树育种现状,并探讨未来发展方向十分必要。转基因技术、分子标记技术等分子育种技术具有周期短、效率高、定向育种精确度高等优点,将其应用于果树育种可以改良果品品质并增强产业竞争力,是现代果树改良育种研究的重要手段。结合我国果树产业现阶段存在的品种单一、品质下降、病虫害危害增加等实际问题,从改善果实色泽、果型、大小、风味、质地、香味、功能物质等果实品质相关性状,以及提高抗干旱、低温、高温等非生物胁迫和抗病虫害等生物胁迫能力出发,综述了现代分子生物学技术在果树育种中的应用进展、不足以及发展建议,认为我国果树分子育种应该以满足不同人群和不同用途需求为基础,培育多样化、个性化的品种;以优质绿色安全为发展方向,培育抗性好、适合省力化栽培的品种;要充分利用果树全基因组丰富的遗传信息资源,在基因组或系统水平上全面分析基因功能,以揭示果树生长发育、环境应答互作分子网络、代谢等分子机制,为果树定向育种奠定基础;同时应综合运用现代生物学等各种先进技术,提升育种效率,逐步缩短培育新品种的周期。
中图分类号:
苑兆和,陈立德,张心慧,等. 果树分子育种研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 1-12.
YUAN Zhaohe, CHEN Lide, ZHANG Xinhui, ZHAO Yujie. Advances in molecular breeding of fruit trees[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(4): 1-12.DOI: 10.12302/i.issn.1000-2006.202102015.
表1
果实色泽改良分子育种方法"
树种 species | 分子设计 molecular design | 性状变化 character change | 文献 reference |
---|---|---|---|
苹果 Malus domestica | MdMYB10、 MdbHLH3和MdbHLH33多基因过表达 | 产生色素斑块 | [21] |
过表达MdMYBA | 绿色变为紫红色斑点 | [22] | |
过表达MdMYB3 | 红色沉淀加深 | [28] | |
通过MdMYB110a激活CHS启动子过表达MdbHLH3和MdTTG1 | 绿色变为红色 | [29] | |
葡萄 Vitis vinifera | 过表达VvMYB5a | 粉红色加深 | [24] |
过表达VvMYB5b | 粉红色加深 | [25] | |
桃 Prunus persica | MYB10.1和 bHLH3双基因过表达 (或MYB10.3和bHLH3双基因过表达) | 出现红色斑块 | [26] |
樱桃 Cerasus pseudocerasus | 通过RNAi抑制PacMYBA表达 | 红色变为局部白色 | [30] |
砂梨 Pyrus pyrifolia | 过表达PyMYB114 | 出现色素沉淀 | [27] |
过表达PyMYB10 | 出现色素沉淀 | [31] |
表2
果实风味改良分子育种方法"
树种 species | 分子设计 molecular design | 性状变化 character change | 文献 reference |
---|---|---|---|
柑橘 Citrus reticulata | CitERF13和CitVHA-c4双基因过表达 | 增加柠檬酸含量 | [40] |
CitAco3、CitNAC62和CitWRKY1多基因过表达 | 减少柠檬酸含量 | [45] | |
枇杷 Eriobotrya japonica | 过表达EjVIN | 减少果实蔗糖含量,轻微增加果糖含量 | [43] |
柚 Citrus maxima | 过表达CgDREB | 增加有机酸含量以及糖含量 | [44] |
苹果 Malus domestica | MdVHA-B1和MdSOS2L1双基因过表达 | 增加苹果酸含量 | [42] |
MdMYB73和MdClbHLH1多基因过表达 | 增加苹果酸含量 | [46] | |
过表达MdMYB1 | 增加苹果酸盐含量 | [46] | |
过表达MdcyMDH | 增加苹果酸含量 | [47] |
表4
部分果树抗性分子育种方法"
树种 species | 分子设计 molecular design | 性状变化 character change | 文献 reference | 树种 species | 分子设计 molecular design | 性状变化 character change | 文献 reference |
---|---|---|---|---|---|---|---|
苹果 Malus domestica | 过表达MhYTP1 | 抗旱性提高 | [80] | 欧洲李 Prunus domestica | PVR遗传转化 | 抗环斑病 | [97] |
分子标记辅助育种 | 耐盐性提高 | [87] | |||||
MdUGT88F1遗传转化 | 抗病性提高 | [99] | 杏 Armeniaca vulgaris | PPV遗传转化 | 抗痘疫病 | [98] | |
CrylA遗传转化 | 抗虫性提高 | [111] | |||||
橄榄 Canarium album | 渗透压基因遗传转化 | 抗旱性提高 | [81] | 葡萄 Vitis vinifera | VrERE,STS遗传转化 | 抗病 | [100] |
蓝莓 Vaccinium spp. | 分子标记辅助育种 | 抗寒性提高 | [83] | 甜樱桃 Prunus avium | IR region of PNRSV遗传转化 | 抗病 | [105] |
柠檬 Citrus limon | 过表达PtrbHLH | 抗寒性提高 | [84] | 柑橘 Citrus reticulata | 分子标记辅助育种 | 耐盐性提高 | [88] |
分子标记辅助育种 | 耐盐性提高 | [89] | CTV遗传转化 | 抗病 | [106] | ||
Xa21遗传转化 | 抗溃疡病 | [107] | |||||
猕猴桃 Actinidia chinensis | mltD/gutD遗传转化 | 耐盐性提高 | [86] | 分子标记辅助育种 | 抗虫 | [112] | |
椰枣 Phoenix dactylifera | 分子标记辅助育种 | 耐盐性提高 | [92] | GNA遗传转化 | 抗虫 | [113] | |
番木瓜 Carica papaya | PVR遗传转化 | 抗环斑病 | [95] | 梨 Pyrus spp. | 分子标记辅助育种 | 抗赤霉病 | [108] |
过表达Attacin E | 抗火疫病 | [109] |
[1] | 邓秀新, 束怀瑞, 郝玉金, 等. 果树学科百年发展回顾[J]. 农学学报, 2018, 8(1):24-34. |
DENG X X, SHU H R, HAO Y J, et al. Review on the centennial development of pomology in China[J]. J Agric, 2018, 8(1):24-34. | |
[2] | 邓秀新. 关于我国水果产业发展若干问题的思考[J]. 果树学报, 2021, 38(1):121-127. |
DENG X X. Thoughts on the development of China’s fruit industry[J]. J Fruit Sci, 2021, 38(1):121-127.DOI: 10.13925/j.cnki.gsxb.20200509.
doi: 10.13925/j.cnki.gsxb.20200509 |
|
[3] | 龙兴桂, 冯殿齐, 苑兆和. 中国现代果树栽培[M]. 北京: 中国农业出版社, 2020. |
LONG X G, FENG D Q, YUAN Z H. Modern fruit tree cultivation in China[M]. Beijing: Chinese Agriculture Press, 2020. | |
[4] | 陈学森, 李秀根, 毛志泉, 等. 新种质创造支撑果品产业升级:红肉苹果和‘库尔勒香梨’种质资源利用以及‘红富士’芽变选种案例分析[J]. 果树学报, 2021, 38(1):128-141. |
CHEN X S, LI X G, MAO Z Q, et al. Fruit industry upgrading supported by new germplasm creation:case study on the utilization of germplasm resources of red-fleshed apple and ‘Kuerlexiangli’ pear and the sports selection of ‘Red Fuji’[J]. J Fruit Sci, 2021, 38(1):128-141.DOI: 10.13925/j.cnki.gsxb.20200300.
doi: 10.13925/j.cnki.gsxb.20200300 |
|
[5] | 邓秀新, 王力荣, 李绍华, 等. 果树育种40年回顾与展望[J]. 果树学报, 2019, 36(4):514-520. |
DENG X X, WANG L R, LI S H, et al. Retrospection and prospect of fruit breeding for last four de-cades in China[J]. J Fruit Sci, 2019, 36(4):514-520.DOI: 10.13925/j.cnki.gsxb.20190094.
doi: 10.13925/j.cnki.gsxb.20190094 |
|
[6] |
YUE J, LIU J, TANG W, et al. Kiwifruit genome database (KGD):a comprehensive resource for kiwifruit genomics[J]. Hortic Res, 2020, 7:117.DOI: 10.1038/s41438-020-0338-9.
doi: 10.1038/s41438-020-0338-9 |
[7] | 李桂芬, 杨向晖, 乔燕春, 等. 枇杷属植物种间及近缘属杂交亲和性研究[J]. 园艺学报, 2016, 43(6):1069-1078. |
LI G F, YANG X H, QIAO Y C, et al. Study on interspecific and intergeneric hybridization compatibility of Eriobotrya and related genera[J]. Acta Hortic Sin, 2016, 43(6):1069-1078.DOI: 10.16420/j.issn.0513-353x.2016-0215.
doi: 10.16420/j.issn.0513-353x.2016-0215 |
|
[8] | 赵丹, 王飞, 赵秀明, 等. 柿属部分品种杂交亲和性以及结实性的研究[J]. 园艺学报, 2012, 39(11):2229-2237. |
ZHAO D, WANG F, ZHAO X M, et al. Studies of cross compatibility and fecundity on part of Diospyros[J]. Acta Hortic Sin, 2012, 39(11):2229-2237.DOI: 10.16420/j.issn.0513-353x.2012.11.017.
doi: 10.16420/j.issn.0513-353x.2012.11.017 |
|
[9] |
JIA H M, JIA H J, CAI Q L, et al. The red bayberry genome and genetic basis of sex determination[J]. Plant Biotechnol J, 2019, 17(2):397-409.DOI: 10.1111/pbi.12985.
doi: 10.1111/pbi.12985 |
[10] | 高源, 刘凤之, 曹玉芬, 等. 苹果属种质资源亲缘关系的SSR分析[J]. 果树学报, 2007, 24(2):129-134. |
GAO Y, LIU F Z, CAO Y F, et al. Analysis of genetic relationship for Malus germplasm resources by SSR markers[J]. J Fruit Sci, 2007, 24(2):129-134. | |
[11] | 韩振诚, 潘学军, 安华明, 等. 贵州柿属植物种质资源遗传多样性的SRAP分析[J]. 果树学报, 2015, 32(5):751-762. |
HAN Z C, PAN X J, AN H M, et al. Genetic diversity of Diospyros Linn.in Guizhou based on SRAP[J]. J Fruit Sci, 2015, 32(5):751-762.DOI: 10.13925/j.cnki.gsxb.20150171.
doi: 10.13925/j.cnki.gsxb.20150171 |
|
[12] | 钟敏, 廖光联, 李章云, 等. 野生毛花猕猴桃雄花花器性状及SSR遗传多样性研究[J]. 果树学报, 2018, 35(6):658-667. |
ZHONG M, LIAO G L, LI Z Y, et al. Genetic diversity of wild male kiwifruit (Actinidia eriantha Benth.) germplasms based on SSR and morphological markers[J]. J Fruit Sci, 2018, 35(6):658-667.DOI: 10.13925/j.cnki.gsxb.20170514.
doi: 10.13925/j.cnki.gsxb.20170514 |
|
[13] | 夏溪, 奉树成, 张春英. 新型分子生物学技术在花卉定向育种中的应用进展[J]. 南京林业大学学报(自然科学版), 2019, 43(6):173-180. |
XIA X, FENG S C, ZHANG C Y. Advance in flower directive breeding using new molecular biology techniques[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(6):173-180.DOI: 10.3969/j.issn.1000-2006.201902014.
doi: 10.3969/j.issn.1000-2006.201902014 |
|
[14] |
DING Y, LI H, CHEN L L, et al. Recent advances in genome editing using CRISPR/Cas9[J]. Front Plant Sci, 2016, 7:703.DOI: 10.3389/fpls.2016.00703.
doi: 10.3389/fpls.2016.00703 |
[15] |
WEI Z Z, SUN Z Z, CUI B B, et al. Transcriptome analysis of colored Calla lily (Zantedeschia rehmannii Engl.) by Illumina sequencing:de novo assembly,annotation and EST-SSR marker development[J]. Peer J, 2016, 4:e2378.DOI: 10.7717/peerj.2378.
doi: 10.7717/peerj.2378 |
[16] |
CHEN M X, SUN C, ZHANG K L, et al. SWATH-MS-facilitated proteomic profiling of fruit skin between Fuji apple and a red skin bud sport mutant[J]. BMC Plant Biol, 2019, 19(1):445.DOI: 10.1186/s12870-019-2018-1.
doi: 10.1186/s12870-019-2018-1 |
[17] |
ZHAO G, LIAN Q, ZHANG Z, et al. A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits[J]. Nat Genet, 2019, 51(11):1607-1615.DOI: 10.1038/s41588-019-0522-8.
doi: 10.1038/s41588-019-0522-8 |
[18] |
DIXON R A, STEELE C L. Flavonoids and isoflavonoids:a gold mine for metabolic engineering[J]. Trends Plant Sci, 1999, 4(10):394-400.DOI: 10.1016/s1360-1385(99)01471-5.
doi: 10.1016/s1360-1385(99)01471-5 |
[19] |
PETRONI K, TONELLI C. Recent advances on the regulation of anthocyanin synjournal in reproductive organs[J]. Plant Sci, 2011, 181(3):219-229.DOI: 10.1016/j.plantsci.2011.05.009.
doi: 10.1016/j.plantsci.2011.05.009 |
[20] |
TAKOS A M, JAFFÉ F W, JACOB S R, et al. Light-induced expression of a MYB gene regulates anthocyanin biosynjournal in red apples[J]. Plant Physiol, 2006, 142(3):1216-1232.DOI: 10.1104/pp.106.088104.
doi: 10.1104/pp.106.088104 |
[21] |
ESPLEY R V, HELLENS R P, PUTTERILL J, et al. Red colouration in apple fruit is due to the activity of the MYB transcription factor,MdMYB10[J]. Plant J, 2007, 49(3):414-427.DOI: 10.1111/j.1365-313x.2006.02964.x.
doi: 10.1111/j.1365-313x.2006.02964.x |
[22] |
BAN Y, HONDA C, HATSUYAMA Y, et al. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin[J]. Plant Cell Physiol, 2007, 48(7):958-970.DOI: 10.1093/pcp/pcm066.
doi: 10.1093/pcp/pcm066 |
[23] |
KOBAYASHI S. Retrotransposon-induced mutations in grape skin color[J]. Science, 2004, 304(5673):982.DOI: 10.1126/science.1095011.
doi: 10.1126/science.1095011 |
[24] |
DELUC L, BARRIEU F, MARCHIVE C, et al. Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway[J]. Plant Physiol, 2006, 140(2):499-511.DOI: 10.1104/pp.105.067231.
doi: 10.1104/pp.105.067231 |
[25] |
DELUC L, BOGS J, WALKER A R, et al. The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynjournal in developing grape berries[J]. Plant Physiol, 2008, 147(4):2041-2053.DOI: 10.1104/pp.108.118919.
doi: 10.1104/pp.108.118919 |
[26] |
RAHIM M A, BUSATTO N, TRAINOTTI L. Regulation of anthocyanin biosynjournal in peach fruits[J]. Planta, 2014, 240(5):913-929.DOI: 10.1007/s00425-014-2078-2.
doi: 10.1007/s00425-014-2078-2 |
[27] |
YAO G, MING M, ALLAN A C, et al. Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynjournal[J]. Plant J, 2017, 92(3):437-451.DOI: 10.1111/tpj.13666.
doi: 10.1111/tpj.13666 |
[28] |
VIMOLMANGKANG S, HAN Y, WEI G, et al. An apple MYB transcription factor,MdMYB3,is involved in regulation of anthocyanin biosynjournal and flower development[J]. BMC Plant Biol, 2013, 13:176.DOI: 10.1186/1471-2229-13-176.
doi: 10.1186/1471-2229-13-176 |
[29] |
CHAGNÉ D, KUI L W, ESPLEY R V, et al. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes[J]. Plant Physiol, 2013, 161(1):225-239.DOI: 10.1104/pp.112.206771.
doi: 10.1104/pp.112.206771 |
[30] |
SHEN X, ZHAO K, LIU L, et al. A role for PacMYBA in ABA-regulated anthocyanin biosynjournal in red-colored sweet cherry cv.Hong Deng (Prunus avium L.)[J]. Plant Cell Physiol, 2014, 55(5):862-880.DOI: 10.1093/pcp/pcu013.
doi: 10.1093/pcp/pcu013 |
[31] |
FENG S, WANG Y, YANG S, et al. Anthocyanin biosynjournal in pears is regulated by a R2R3-MYB transcription factor PyMYB10[J]. Planta, 2010, 232(1):245-255.DOI: 10.1007/s00425-010-1170-5.
doi: 10.1007/s00425-010-1170-5 |
[32] |
DIRLEWANGER E, PRONIER V, PARVERY C, et al. Genetic linkage map of peach [Prunus persica (L.) Batsch]using morphological and molecular markers[J]. Theor Appl Genet, 1998, 97(5/6):888-895.DOI: 10.1007/s001220050969.
doi: 10.1007/s001220050969 |
[33] |
DIRLEWANGER E, COSSON P, BOUDEHRI K, et al. Development of a second-generation genetic linkage map for peach[Prunus persica (L.) Batsch]and characterization of morphological traits affecting flower and fruit[J]. Tree Genet Genomes, 2006, 3(1):1-13.DOI: 10.1007/s11295-006-0053-1.
doi: 10.1007/s11295-006-0053-1 |
[34] |
SU L, BASSA C, AUDRAN C, et al. The auxin Sl-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplication-related cell expansion[J]. Plant Cell Physiol, 2014, 55(11):1969-1976.DOI: 10.1093/pcp/pcu124.
doi: 10.1093/pcp/pcu124 |
[35] |
TELLO J, TORRES-PÉREZ R, GRIMPLET J, et al. Polymorphisms and minihaplotypes in the VvNAC26 gene associate with berry size variation in grapevine[J]. BMC Plant Biol, 2015, 15:253.DOI: 10.1186/s12870-015-0622-2.
doi: 10.1186/s12870-015-0622-2 |
[36] |
QI X L, LIU C L, SONG L L, et al. PaCYP78A9,a cytochrome P450,regulates fruit size in sweet cherry (Prunus avium L.)[J]. Front Plant Sci, 2017, 8:2076.DOI: 10.3389/fpls.2017.02076.
doi: 10.3389/fpls.2017.02076 |
[37] |
ROSYARA U R BINK M C A M WEG E, et al. Fruit size QTL identification and the prediction of parental QTL genotypes and breeding values in multiple pedigreed populations of sweet cherry[J]. Mol Breed, 2013, 32(4):875-887.DOI: 10.1007/s11032-013-9916-y.
doi: 10.1007/s11032-013-9916-y |
[38] |
DE FRANCESCHI P, STEGMEIR T, CABRERA A, et al. Cell number regulator genes in Prunus provide candidate genes for the control of fruit size in sweet and sour cherry[J]. Mol Breed, 2013, 32:311-326.DOI: 10.1007/s11032-013-9872-6.
doi: 10.1007/s11032-013-9872-6 |
[39] |
ETIENNE A, GÉNARD M, LOBIT P, et al. What controls fleshy fruit acidity?A review of malate and citrate accumulation in fruit cells[J]. J Exp Bot, 2013, 64(6):1451-1469.DOI: 10.1093/jxb/ert035.
doi: 10.1093/jxb/ert035 |
[40] |
LI S J, YIN X R, XIE X L, et al. The Citrus transcription factor,CitERF13,regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump,CitVHA-c4[J]. Sci Rep, 2016, 6:20151.DOI: 10.1038/srep20151.
doi: 10.1038/srep20151 |
[41] |
HU D G, SUN C H, MA Q J, et al. MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples[J]. Plant Physiol, 2016, 170(3):1315-1330.DOI: 10.1104/pp.15.01333.
doi: 10.1104/pp.15.01333 |
[42] |
HU D G, SUN C H, SUN M H, et al. MdSOS2L1 phosphorylates MdVHA-B1 to modulate malate accumulation in response to salinity in apple[J]. Plant Cell Rep, 2016, 35(3):705-718.DOI: 10.1007/s00299-015-1914-6.
doi: 10.1007/s00299-015-1914-6 |
[43] |
WANG Y P, CHEN J W, FENG J J, et al. Overexpression of a loquat (Eriobotrya japonica Lindl.) vacuolar invertase affects sucrose levels and growth[J]. Plant Cell Tissue Organ Cult (PCTOC), 2015, 123(1):99-108.DOI: 10.1007/s11240-015-0817-0.
doi: 10.1007/s11240-015-0817-0 |
[44] |
NISHAWY E, SUN X H, EWAS M, et al. Overexpression of Citrus grandis DREB gene in tomato affects fruit size and accumulation of primary metabolites[J]. Sci Hortic, 2015, 192:460-467.DOI: 10.1016/j.scienta.2015.06.035.
doi: 10.1016/j.scienta.2015.06.035 |
[45] |
LI S J, YIN X R, WANG W L, et al. Citrus CitNAC62 cooperates with CitWRKY1 to participate in citric acid degradation via up-regulation of CitAco3[J]. J Exp Bot, 2017, 68(13):3419-3426.DOI: 10.1093/jxb/erx187.
doi: 10.1093/jxb/erx187 |
[46] |
HU D G, LI Y Y, ZHANG Q Y, et al. The R2R3-MYB transcription factor MdMYB73 is involved in malate accumulation and vacuolar acidification in apple[J]. Plant J, 2017, 91(3):443-454.DOI: 10.1111/tpj.13579.
doi: 10.1111/tpj.13579 |
[47] |
YAO Y X, LI M, ZHAI H, et al. Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synjournal[J]. J Plant Physiol, 2011, 168(5):474-480.DOI: 10.1016/j.jplph.2010.08.008.
doi: 10.1016/j.jplph.2010.08.008 |
[48] |
PEACE C P, CRISOSTO C H, GRADZIEL T M. Endopolygalacturonase:a candidate gene for freestone and melting fleshin peach[J]. Mol Breed, 2005, 16(1):21-31.DOI: 10.1007/s11032-005-0828-3.
doi: 10.1007/s11032-005-0828-3 |
[49] |
MORGUTTI S, NEGRINI N, GHIANI A, et al. Endopolygalacturonase gene polymorphisms:asset of the locus in different peach accessions[J]. Am J Plant Sci, 2017, 8(4):941-957.DOI: 10.4236/ajps.2017.84063.
doi: 10.4236/ajps.2017.84063 |
[50] |
COSTA F, WEG W E, STELLA S, et al. Map position and functional allelic diversity of Md-Exp7,a new putative expansin gene associated with fruit softening in apple (Malus × domestica Borkh.) and pear (Pyrus communis)[J]. Tree Genet Genomes, 2008, 4(3):575-586.DOI: 10.1007/s11295-008-0133-5.
doi: 10.1007/s11295-008-0133-5 |
[51] |
TATSUKI M, NAKAJIMA N, FUJII H, et al. Increased levels of IAA are required for system 2 ethylene synjournal causing fruit softening in peach (Prunus persica L.Batsch)[J]. J Exp Bot, 2013, 64(4):1049-1059.DOI: 10.1093/jxb/ers381.
doi: 10.1093/jxb/ers381 |
[52] | 张宗营. ‘泰山早霞’苹果(Malus domestica Borkh.)果实成熟软化相关基因的分离与功能鉴定[D]. 泰安:山东农业大学, 2016. |
ZHANG Z Y. Isolation and function characterization of genes associated with fruit ripening and softening in ‘Taishanzaoxia’ apple(Malus domestica Borkh.)[D]. Taian:Shandong Agricultural University, 2016. | |
[53] |
LI M, ZHANG Y, ZHANG Z, et al. Hypersensitive ethylene signaling and ZMdPG1 expression lead to fruit softening and dehiscence[J]. PLoS One, 2013, 8(3):e58745.DOI: 10.1371/journal.pone.0058745.
doi: 10.1371/journal.pone.0058745 |
[54] |
HAYAMA H, TATSUKI M, ITO A, et al. Ethylene and fruit softe-ning in the stony hard mutation in peach[J]. Postharvest Biol Technol, 2006, 41(1):16-21.DOI: 10.1016/j.postharvbio.2006.03.006.
doi: 10.1016/j.postharvbio.2006.03.006 |
[55] |
PONTES M, MARQUES J C, CÂMARA J S. Headspace solid-phase microextraction-gas chromatography-quadrupole mass spectrometric methodology for the establishment of the volatile composition of Passiflora fruit species[J]. Microchem J, 2009, 93(1):1-11.DOI: 10.1016/j.microc.2009.03.010.
doi: 10.1016/j.microc.2009.03.010 |
[56] |
ZHANG E P, CHAI F M, ZHANG H H, et al. Effects of sunlight exclusion on the profiles of monoterpene biosynjournal and accumulation in grape exocarp and mesocarp[J]. Food Chem, 2017, 237:379-389.DOI: 10.1016/j.foodchem.2017.05.127.
doi: 10.1016/j.foodchem.2017.05.127 |
[57] |
LÜCKER J, SCHWAB W, VAN HAUTUM B, et al. Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon[J]. Plant Physiol, 2004, 134(1):510-519.DOI: 10.1104/pp.103.030189.
doi: 10.1104/pp.103.030189 |
[58] |
SHEN S L, YIN X R, ZHANG B, et al. CitAP2.10 activation of the terpene synthase CsTPS1 is associated with the synjournal of (+)-valencene in ‘Newhall’ orange[J]. J Exp Bot, 2016, 67(14):4105-4115.DOI: 10.1093/jxb/erw189.
doi: 10.1093/jxb/erw189 |
[59] |
LARA I, ECHEVERRÍA G, GRAELL J, et al. Volatile emission after controlled atmosphere storage of mondial gala apples (Malus domestica): relationship to some involved enzyme activities[J]. J Agric Food Chem, 2007, 55(15):6087-6095.DOI: 10.1021/jf070464h.
doi: 10.1021/jf070464h |
[60] | 王娇娇, 黄玉吉, 张波, 等. 桃果实PpFAD2基因的功能研究[C]// 中国园艺学会.2015年学术年会论文集.厦门, 2015: 27. |
[61] |
JAAKOLA L. New insights into the regulation of anthocyanin biosynjournal in fruits[J]. Trends Plant Sci, 2013, 18(9):477-483.DOI: 10.1016/j.tplants.2013.06.003.
doi: 10.1016/j.tplants.2013.06.003 |
[62] |
GAFRIKOVA M, GALOVA E, SEVCOVICOVA A, et al. Extract from Armoracia rusticana and its flavonoid components protect human lymphocytes against oxidative damage induced by hydrogen peroxide[J]. Molecules, 2014, 19(3):3160-3172.DOI: 10.3390/molecules19033160.
doi: 10.3390/molecules19033160 |
[63] |
BATRA P, SHARMA A K. Anti-cancer potential of flavonoids:recent trends and future perspectives[J]. 3 Biotech, 2013, 3(6):439-459.DOI: 10.1007/s13205-013-0117-5.
doi: 10.1007/s13205-013-0117-5 |
[64] |
CZEMMEL S, STRACKE R, WEISSHAAR B, et al. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synjournal in developing grape berries[J]. Plant Physiol, 2009, 151(3):1513-1530.DOI: 10.1104/pp.109.142059.
doi: 10.1104/pp.109.142059 |
[65] | 孙庆国, 姜生辉, 房鸿成, 等. 苹果MdNAC9的克隆及其调控黄酮醇合成功能的鉴定[J]. 园艺学报, 2019, 46(11):2073-2081. |
SUN Q G, JIANG S H, FANG H C, et al. Cloning of MdNAC9 and functional of its regulation on flavonol synjournal[J]. Acta Hortic Sin, 2019, 46(11):2073-2081.DOI: 10.16420/j.issn.0513-353x.2018-1070.
doi: 10.16420/j.issn.0513-353x.2018-1070 |
|
[66] |
ZAKAR T, LACZKO-DOBOS H, TOTH T N, et al. Carotenoids assist in cyanobacterial photosystem II assembly and function[J]. Front Plant Sci, 2016, 7:295.DOI: 10.3389/fpls.2016.00295.
doi: 10.3389/fpls.2016.00295 |
[67] | 张印, 万勇, 张婷, 等. 柑橘愈伤组织RNAi沉默CCD1基因对其类胡萝卜素积累的影响[J]. 园艺学报, 2020, 47(10):1982-1990. |
ZHANG Y, WAN Y, ZHANG T, et al. RNAi-mediated suppression of CCD1 gene impacts carotenoid accumulation in citrus calli[J]. Acta Hortic Sin, 2020, 47(10):1982-1990.DOI: 10.16420/j.issn.0513-353x.2019-1007.
doi: 10.16420/j.issn.0513-353x.2019-1007 |
|
[68] | 洪敏, 石丝, 何珊珊, 等. VIGS诱导PSY基因沉默对枇杷果实类胡萝卜素积累的影响[J]. 分子植物育种, 2018, 16(6):1792-1797. |
HONG M, SHI S, HE S S, et al. Effects of VIGS induced PSY gene silencing on carotenoid accumulation in fruit of Eriobotrya japonica Lindl[J]. Mol Plant Breed, 2018, 16(6):1792-1797.DOI: 10.13271/j.mpb.016.001792.
doi: 10.13271/j.mpb.016.001792 |
|
[69] |
WEI T, DENG K J, LIU D Q, et al. Ectopic expression of DREB transcription factor,AtDREB1A,confers tolerance to drought in transgenic Salvia miltiorrhiza[J]. Plant Cell Physiol, 2016, 57(8):1593-1609.DOI: 10.1093/pcp/pcw084.
doi: 10.1093/pcp/pcw084 |
[70] |
NISHAWY E, SUN X H, EWAS M, et al. Over expression of Citrus grandis DREB gene in tomato affects fruit size and accumulation of primary metabolites[J]. Sci Hortic, 2015, 192:460-467.DOI: 10.1016/j.scienta.2015.06.035.
doi: 10.1016/j.scienta.2015.06.035 |
[71] | 裴庆利, 王春连, 刘丕庆, 等. 分子标记辅助选择在水稻抗病虫基因聚合上的应用[J]. 中国水稻科学, 2011(2):119-129. |
PEI Q L, WANG C L, LIU P Q, et al. Marker-assisted selection for pyramiding disease and insect resistance genes in rice[J]. Chin J Rice Sci, 2011, 25(2):119-129. | |
[72] | 李君霞, 代书桃, 陈宇翔, 等. MYB转录因子在植物抗旱基因工程中的应用进展[J]. 河南农业科学, 2020, 49(11):1-9. |
LI J X, DAI S T, CHEN Y X, et al. Progress on application of MYB transcription factor in plant drought tolerance genetic engineering[J]. J Henan Agric Sci, 2020, 49(11):1-9.DOI: 10.15933/j.cnki.1004-3268.2020.11.001.
doi: 10.15933/j.cnki.1004-3268.2020.11.001 |
|
[73] |
GUBLER F, KALLA R, ROBERTS J K, et al. Gibberellin-regulated expression of a myb gene in barley aleurone cells:evidence for Myb transactivation of a high-pI alpha-amylase gene promoter[J]. Plant Cell, 1995, 7(11):1879-1891.DOI: 10.1105/tpc.7.11.1879.
doi: 10.1105/tpc.7.11.1879 |
[74] |
LI M J, QIAO Y, LI Y Q, et al. A R2R3-MYB transcription factor gene in common wheat (namely TaMYBsm1) involved in enhancement of drought tolerance in transgenic Arabidopsis[J]. J Plant Res, 2016, 129(6):1097-1107.DOI: 10.1007/s10265-016-0857-5.
doi: 10.1007/s10265-016-0857-5 |
[75] |
QIN Y X, WANG M C, TIAN Y C, et al. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis[J]. Mol Biol Rep, 2012, 39(6):7183-7192.DOI: 10.1007/s11033-012-1550-y.
doi: 10.1007/s11033-012-1550-y |
[76] |
ZHANG L, ZHAO G, XIA C, et al. A wheat R2R3-MYB gene,TaMYB30-B,improves drought stress tolerance in transgenic Arabidopsis[J]. J Exp Bot, 2012, 63(16):5873-5885.DOI: 10.1093/jxb/ers237.
doi: 10.1093/jxb/ers237 |
[77] |
YU Y T, WU Z, LU K, et al. Overexpression of the MYB37 transcription factor enhances abscisic acid sensitivity,and improves both drought tolerance and seed productivity in Arabidopsis thaliana[J]. Plant Mol Biol, 2016, 90(3):267-279.DOI: 10.1007/s11103-015-0411-1.
doi: 10.1007/s11103-015-0411-1 |
[78] |
LI K, XING C, YAO Z, et al. PbrMYB21,a novel MYB protein of Pyrus betulaefolia,functions in drought tolerance and modulates polyamine levels by regulating arginine decarboxylase gene[J]. Plant Biotechnol J, 2017, 15(9):1186-1203.DOI: 10.1111/pbi.12708.
doi: 10.1111/pbi.12708 |
[79] |
SHUKLA P S, GUPTA K, AGARWAL P, et al. Overexpression of a novel SbMYB15 from Salicornia brachiata confers salinity and dehydration tolerance by reduced oxidative damage and improved photosynjournal in transgenic tobacco[J]. Planta, 2015, 242(6):1291-1308.DOI: 10.1007/s00425-015-2366-5.
doi: 10.1007/s00425-015-2366-5 |
[80] |
GUO T L, WANG N, XUE Y C, et al. Overexpression of the RNA binding protein MhYTP1 in transgenic apple enhances drought tolerance and WUE by improving ABA level under drought condition[J]. Plant Sci, 2019, 280:397-407.DOI: 10.1016/j.plantsci.2018.11.018.
doi: 10.1016/j.plantsci.2018.11.018 |
[81] |
RUGINI E, DE PACE C. Olive breeding with classical and modern approaches Olive Tree Genome, 2016:163-193.DOI: 10.1007/978-3-319-48887-5_10.
doi: 10.1007/978-3-319-48887-5_10 |
[82] | 乌凤章, 王贺新, 徐国辉, 等. 木本植物低温胁迫生理及分子机制研究进展[J]. 林业科学, 2015, 51(7):116-128. |
WU F Z, WANG H X, XU G H, et al. Research progress on the physiological and molecular mechanisms of woody plants under low temperature stress[J]. Sci Silvae Sin, 2015, 51(7):116-128. | |
[83] | 刘肖. 蓝莓抗寒性、需冷量SNP分析与分子辅助育种研究[D]. 北京:北京林业大学, 2013. |
LIU X. Study on molecular marker-assisted breeding with single nucleotide polymorphisms linked to cold hardiness and chilling requirement in blueberry[D]. Beijing:Beijing Forestry University, 2013. | |
[84] |
HUANG X S, WANG W, ZHANG Q, et al. A basic helix-loop-helix transcription factor,PtrbHLH,of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide[J]. Plant Physiol, 2013, 162(2):1178-1194.DOI: 10.1104/pp.112.210740.
doi: 10.1104/pp.112.210740 |
[85] |
LIU C Y, YAN M, HUANG X B, et al. Effects of NaCl stress on growth and ion homeostasis in pomegranate tissues[J]. Eur J Hortic Sci, 2020, 85(1):42-50.DOI: 10.17660/ejhs.2020/85.1.5.
doi: 10.17660/ejhs.2020/85.1.5 |
[86] | 樊军锋, 李嘉瑞, 韩一凡, 等. mtlD/gutD双价耐盐基因转化秦美猕猴桃的研究[J]. 西北农林科技大学学报(自然科学版), 2002, 30(3):53-58. |
FAN J F, LI J R, HAN Y F, et al. Studies on transformation of mtlD/gutD salt-resistant gene to Kiwifruit(Qin-mei)[J]. J Northwest Sci-Tech Univ Agric For, 2002, 30(3):53-58. DOI: 10.13207/j.cnki.jnwafu.2002.03.014.
doi: 10.13207/j.cnki.jnwafu.2002.03.014 |
|
[87] | 孙宁, 孙建设, 李增裕. 苹果砧木耐盐突变体的筛选鉴定及RAPD分析[J]. 河北农业大学学报, 2004, 27(5):37-40. |
SUN N, SUN J S, LI Z Y. Salt tolerant mutant screening and RAPD analysis studies on apple rootstock[J]. J Agric Univ Hebei, 2004, 27(5):37-40. | |
[88] |
MOORE G A, GUY C L, TOZLU I, et al. Mapping quantitative trait loci for salt tolerance and cold tolerance in Citrus grandis (L.) osb.× Poncirus trifoliata (L.) raf.hybrid populations[J]. Acta Hortic, 2000(535):37-46.DOI: 10.17660/actahortic.2000.535.3.
doi: 10.17660/actahortic.2000.535.3 |
[89] |
TOZLU I, GUY C L, MOORE G A. QTL analysis of Na+ and Cl- accumulation related traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and nonsaline environments[J]. Genome, 1999, 42(4):692-705.DOI: 10.1139/g99-003.
doi: 10.1139/g99-003 |
[90] |
ZHAO K, SHEN X, YUAN H, et al. Isolation and characterization of dehydration-responsive element-binding factor 2C (MsDREB2C) from Malus sieversii Roem[J]. Plant Cell Physiol, 2013, 54(9):1415-1430.DOI: 10.1093/pcp/pct087.
doi: 10.1093/pcp/pct087 |
[91] |
BOUAZIZ D, PIRRELLO J, BEN AMOR H, et al. Ectopic expression of dehydration responsive element binding proteins (StDREB2) confers higher tolerance to salt stress in potato[J]. Plant Physiol Biochem, 2012, 60:98-108.DOI: 10.1016/j.plaphy.2012.07.029.
doi: 10.1016/j.plaphy.2012.07.029 |
[92] |
YAISH M W, SUNKAR R, ZHENG Y, et al. A genome-wide identification of the miRNAome in response to salinity stress in date palm (Phoenix dactylifera L.)[J]. Front Plant Sci, 2015, 6:946.DOI: 10.3389/fpls.2015.00946.
doi: 10.3389/fpls.2015.00946 |
[93] | 郭宝强. 苹果树腐烂病防治技术要点[J]. 农业工程技术, 2019, 39(35):48. |
GUO B Q. Key points of controlling apple tree rot disease[J]. Agric Eng Technol, 2019, 39(35):48.DOI: 10.16815/j.cnki.11-5436/s.2019.35.036.
doi: 10.16815/j.cnki.11-5436/s.2019.35.036 |
|
[94] | 蒋迪, 徐昌杰, 陈大明, 等. 柑橘转基因研究的现状及展望[J]. 果树学报, 2002, 19(1):48-52. |
JIANG D, XU C J, CHEN D M, et al. Status and prospect of research in Citrus transgene[J]. J Fruit Sci, 2002, 19(1):48-52.DOI: 10.13925/j.cnki.gsxb.2002.01.013.
doi: 10.13925/j.cnki.gsxb.2002.01.013 |
|
[95] |
FITCH M M M, MANSHARDT R M, GONSALVES D, et al. Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus[J]. Bio/Technology, 1992, 10(11):1466-1472.DOI: 10.1038/nbt1192-1466.
doi: 10.1038/nbt1192-1466 |
[96] | 李亚新. 首例商品化的转基因果树:番木瓜[J]. 园艺学报, 2000, 27(1):51. |
LI Y X. The first commercialized genetically modified fruit tree: papaya[J]. Acta Hortic Sin, 2000, 27(1):51. | |
[97] | SCORZA R, CORDTS J M, MANTE S, et al. Agrobacterium-media-ted transformation of plum (Prunus domestica L.) with the papaya ringspot virus coat protein gene[J]. HortScience, 1991, 26(6):786-786. |
[98] |
CÂMARA MACHADO M L, CÂMARA MACHADO A, HANZER V, et al. Regeneration of transgenic plants of Prunus armeniaca containing the coat protein gene of Plum Pox Virus[J]. Plant Cell Rep, 1992, 11(1):25-29.DOI: 10.1007/BF00231834.
doi: 10.1007/BF00231834 |
[99] |
ZHOU K, HU L, LI Y, et al. MdUGT88F1-mediated phloridzin biosynjournal regulates apple development and Valsa canker resis-tance[J]. Plant Physiol, 2019, 180(4):2290-2305.DOI: 10.1104/pp.19.00494.
doi: 10.1104/pp.19.00494 |
[100] |
LEGRAND V, DALMAYRAC S, LATCHÉ A, et al. Constitutive expression of Vr-ERE gene in transformed grapevines confers enhanced resistance to eutypine,a toxin from Eutypa lata[J]. Plant Sci, 2003, 164(5):809-814.DOI: 10.1016/S0168-9452(03)00069-4.
doi: 10.1016/S0168-9452(03)00069-4 |
[101] |
FAN C H, PU N, WANG X P, et al. Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata[J]. Plant Cell Tissue Organ Cult, 2008, 92(2):197-206.DOI: 10.1007/s11240-007-9324-2.
doi: 10.1007/s11240-007-9324-2 |
[102] |
VIDAL J R, KIKKERT J R, DONZELLI B D, et al. Biolistic transformation of grapevine using minimal gene cassette technology[J]. Plant Cell Rep, 2006, 25(8):807-814.DOI: 10.1007/s00299-006-0132-7.
doi: 10.1007/s00299-006-0132-7 |
[103] |
VIDAL J R, KIKKERT J R, MALNOY M A, et al. Evaluation of transgenic ‘Chardonnay’ (Vitis vinifera) containing Magainin genes for resistance to crown gall and powdery mildew[J]. Transgenic Res, 2006, 15(1):69-82.DOI: 10.1007/s11248-005-4423-5.
doi: 10.1007/s11248-005-4423-5 |
[104] |
VIDAL J R, KIKKERT J R, WALLACE P G, et al. High-efficiency biolistic co-transformation and regeneration of ‘Chardonnay’ (Vitis vinifera L.) containing npt-II and antimicrobial peptide genes[J]. Plant Cell Rep, 2003, 22(4):252-260.DOI: 10.1007/s00299-003-0682-x.
doi: 10.1007/s00299-003-0682-x |
[105] |
SONG G Q, SINK K C, WALWORTH A E, et al. Engineering cherry rootstocks with resistance to Prunus necrotic ring spot virus through RNAi-mediated silencing[J]. Plant Biotechnol J, 2013, 11(6):702-708.DOI: 10.1111/pbi.12060.
doi: 10.1111/pbi.12060 |
[106] |
MACHADO M A, CRISTOFANI-YALY M, BASTIANEL M. Breeding,genetic and genomic of Citrus for disease resistance[J]. Rev Bras Frutic, 2011, 33(spe1):158-172.DOI: 10.1590/s0100-29452011000500019.
doi: 10.1590/s0100-29452011000500019 |
[107] |
OMAR A A, MURATA M M, EL-SHAMY H A, et al. Enhanced resistance to citrus canker in transgenic mandarin expressing Xa21 from rice[J]. Transgenic Res, 2018, 27(2):179-191.DOI: 10.1007/s11248-018-0065-2.
doi: 10.1007/s11248-018-0065-2 |
[108] |
WON K, BASTIAANSE H, KIM Y K, et al. Genetic mapping of polygenic scab (Venturia pirina) resistance in an interspecific pear family[J]. Mol Breed, 2014, 34(4):2179-2189.DOI: 10.1007/s11032-014-0172-6.
doi: 10.1007/s11032-014-0172-6 |
[109] |
REYNOIRD J P, MOURGUES F, NORELLI J, et al. First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyalophora cecropia[J]. Plant Sci, 1999, 149(1):23-31.DOI: 10.1016/S0168-9452(99)00139-9.
doi: 10.1016/S0168-9452(99)00139-9 |
[110] | 李梦桃, 李圣彦, 汪海, 等. 转cry2Ah-vp基因玉米的抗虫性鉴定[J]. 植物保护学报, 2020, 47(1):74-83. |
LI M T, LI S Y, WANG H, et al. Identification of insect resistance in the transgenic maize harboring cry2Ah-vp gene[J]. J Plant Prot, 2020, 47(1):74-83.DOI: 10.13802/j.cnki.zwbhxb.2020.2019043.
doi: 10.13802/j.cnki.zwbhxb.2020.2019043 |
|
[111] |
JAMES D J, PASSEY A J, WEBSTER A D, et al. Transgenic apples and strawberries: advances in transformation,introduction of genes for insect resistance and field studies of tissue cultured plants[J]. Acta Hortic, 1993, 336:179-184. DOI: 10.17660/ActaHortic.1993.336.22.
doi: 10.17660/ActaHortic.1993.336.22 |
[112] |
LING P, DUNCAN L W, DENG Z, et al. Inheritance of Citrus nematode resistance and its linkage with molecular markers[J]. Theor Appl Genet, 2000, 100(7):1010-1017.DOI: 10.1007/s001220051382.
doi: 10.1007/s001220051382 |
[113] |
YANG Z N, INGELBRECHT I L, LOUZADA E, et al. Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio Red (Citrus paradisi Macf.)[J]. Plant Cell Rep, 2000, 19(12):1203-1211.DOI: 10.1007/s002990000257.
doi: 10.1007/s002990000257 |
[114] |
RAMÍREZ F, KALLARACKAL J. Introduction[M]// Responses of fruit trees to global climate change.Cham: Springer International Publishing, 2015:1-2. DOI: 10.1007/978-3-319-14200-5_1.
doi: 10.1007/978-3-319-14200-5_1 |
[115] |
CECCARELLI S, GRANDO S, MAATOUGUI M, et al. Plant breeding and climate changes[J]. J Agric Sci, 2010, 148(6):627-637.DOI: 10.1017/s0021859610000651.
doi: 10.1017/s0021859610000651 |
[116] |
OLESEN J E, BØRGESEN C D, ELSGAARD L, et al. Changes in time of sowing,flowering and maturity of cereals in Europe under climate change[J]. Food Addit Contam:Part A, 2012, 29(10):1527-1542.DOI: 10.1080/19440049.2012.712060.
doi: 10.1080/19440049.2012.712060 |
[117] |
CAMPOY J A, RUIZ D, EGEA J. Dormancy in temperate fruit trees in a global warming context:a review[J]. Sci Hortic, 2011, 130(2):357-372.DOI: 10.1016/j.scienta.2011.07.011.
doi: 10.1016/j.scienta.2011.07.011 |
[118] | 蔡榕硕, 付迪. 全球变暖背景下中国东部气候变迁及其对物候的影响[J]. 大气科学, 2018, 42(4):729-740. |
CAI R S, FU D. The pace of climate change and its impacts on phenology in eastern China[J]. Chin J Atmos Sci, 2018, 42(4):729-740. | |
[119] |
郑景云, 葛全胜, 郝志新, 等. 过去150年长三角地区的春季物候变化[J]. 地理学报, 2012, 67(1):45-52.
doi: 10.11821/xb201201005 |
ZHENG J Y, GE Q S, HAO Z X, et al. Changes of spring phenodate in Yangtze River Delta region in the past 150 years[J]. Acta Geogr Sin, 2012, 67(1):45-52. | |
[120] |
TAO F L, YOKOZAWA M, XU Y L, et al. Climate changes and trends in phenology and yields of field crops in China,1981-2000[J]. Agric For Meteorol, 2006, 138(1/2/3/4):82-92.DOI: 10.1016/j.agrformet.2006.03.014.
doi: 10.1016/j.agrformet.2006.03.014 |
[121] | 郭建平. 气候变化对中国农业生产的影响研究进展[J]. 应用气象学报, 2015, 26(1):1-11. |
GUO J P. Advances in impacts of climate change on agricultural production in China[J]. J Appl Meteorol Sci, 2015, 26(1):1-11. | |
[122] | 刘玉洁, 陈巧敏, 葛全胜, 等. 气候变化背景下1981—2010中国小麦物候变化时空分异[J]. 中国科学:地球科学, 2018, 48(7):888-898. |
LIU Y J, CHEN Q M, GE Q S, et al. Spatiotemporal differentiation of changes in wheat phenology in China under climate change from 1981 to 2010[J]. Sci Sin (Terrae), 2018, 48(7):888-898. | |
[123] |
LEGAVE J M, BLANKE M, CHRISTEN D, et al. A comprehensive overview of the spatial and temporal variability of apple bud dormancy release and blooming phenology in western Europe[J]. Int J Biometeorol, 2013, 57(2):317-331.DOI: 10.1007/s00484-012-0551-9.
doi: 10.1007/s00484-012-0551-9 |
[124] | 王力荣, 朱更瑞, 左覃元, 等. 短低温桃和油桃育种进展[J]. 果树科学, 2000, 17(1):57-62. |
WANG L R, ZHU G R, ZUO Q Y, et al. Reviews of low chilling peach and nectarine breeding[J]. J Fruit Sci, 2000, 17(1):57-62. DOI: 10.13925/j.cnki.gsxb.2000.01.014.
doi: 10.13925/j.cnki.gsxb.2000.01.014 |
|
[125] | 赵锋, 刘威生, 刘宁, 等. 我国杏种质资源及遗传育种研究新进展[J]. 果树学报, 2005, 22(6):687-690. |
ZHAO F, LIU W S, LIU N, et al. Reviews of the apricot germplasm resources and genetic breeding in China[J]. J Fruit Sci, 2005, 22(6):687-690. | |
[126] | 郁香荷, 刘威生, 刘宁, 等. 杏温室栽培品种选择及配套技术研究[J]. 果树学报, 2004, 21(1):76-78. |
YU X H, LIU W S, LIU N, et al. Varieties and techniques of cultivation of apricot in greenhouse[J]. J Fruit Sci, 2004, 21(1):76-78. | |
[127] |
KOSKI M H, MACQUEEN D, ASHMAN T L. Floral pigmentation has responded rapidly to global change in ozone and temperature[J]. Curr Biol, 2020, 30(22):4425-4431.DOI: 10.1016/j.cub.2020.08.077.
doi: 10.1016/j.cub.2020.08.077 |
[128] |
VU J C V, NEWMAN Y C, ALLEN L H Jr, et al. Photosynthetic acclimation of young sweet orange trees to elevated growth CO2 and temperature[J]. J Plant Physiol, 2002, 159(2):147-157.DOI: 10.1078/0176-1617-00689.
doi: 10.1078/0176-1617-00689 |
[129] | 侯新村, 李宪利, 高东升, 等. CO2施肥对桃树暗呼吸和光呼吸的影响[J]. 果树学报, 2005, 22(5):466-469. |
HOU X C, LI X L, GAO D S, et al. Effect of CO2 enrichment on respiration and photorespiration of peach trees[J]. J Fruit Sci, 2005, 22(5):466-469. | |
[130] |
EL YAACOUBI A, EL JAOUHARI N, BOURIOUG M, et al. Potential vulnerability of moroccan apple orchard to climate change-induced phenological perturbations:effects on yields and fruit quality[J]. Int J Biometeorol, 2020, 64(3):377-387.DOI: 10.1007/s00484-019-01821-y.
doi: 10.1007/s00484-019-01821-y |
[131] |
BIGARD A, BERHE D T, MAODDI E, et al. Vitis vinifera L.fruit diversity to breed varieties anticipating climate changes[J]. Front Plant Sci, 2018, 9:455.DOI: 10.3389/fpls.2018.00455.
doi: 10.3389/fpls.2018.00455 |
[132] | Al-KHAYRI J M, JAIN S M, JOHNSON D V. Advances in plant breeding strategies: fruits[M]. Spr Int Publing AG, 2018. |
[133] |
GITEA M A, GITEA D, TIT D M, et al. Orchard management under the effects of climate change: implications for apple,plum,and almond growing[J]. Environ Sci Pollut Res, 2019, 26:9908-9915. DOI: 10.1007/s11356-019-04214-1.
doi: 10.1007/s11356-019-04214-1 |
[134] | 李明, 刘聪利, 齐希梁, 等. 中国甜樱桃产业的品种现状、需求特点与未来育种目标[J]. 落叶果树, 2019, 51(3):5-7. |
LI M, LIU C L, QI X L, et al. Current situation,demand characteristics and future breeding objectives of sweet cherry industry in China[J]. Deciduous Fruits, 2019, 51(3):5-7.DOI: 10.13855/j.cnki.lygs.2019.03.002.
doi: 10.13855/j.cnki.lygs.2019.03.002 |
|
[135] | 彭颖姝, 高捍东, 苑兆和. 全球气候变化对温带果树的影响[J]. 中国农业科技导报, 2018, 20(7):1-10. |
PENG Y S, GAO H D, YUAN Z H. Impact of global climate change on temperate fruit tree[J]. J Agric Sci Technol, 2018, 20(7):1-10.DOI: 10.13304/j.nykjdb.2017.0463.
doi: 10.13304/j.nykjdb.2017.0463 |
|
[136] | 束怀瑞. 关于苹果产业新动能的几点思考[J]. 落叶果树, 2018, 50(2):1-2. |
SHU H R. Some thoughts on the new momentum of the apple industry[J]. Deciduous Fruits, 2018, 50(2):1-2.DOI: 10.13855/j.cnki.lygs.2018.02.001.
doi: 10.13855/j.cnki.lygs.2018.02.001 |
|
[137] | 冯轶, 许雪峰, 张新忠, 等. 苹果矮化砧木致矮机理的研究进展[J]. 园艺学报, 2018, 45(9):1633-1641. |
FENG Y, XU X F, ZHANG X Z, et al. Progress of dwarfing mechanism of apple rootstock[J]. Acta Hortic Sin, 2018, 45(9):1633-1641.DOI: 10.16420/j.issn.0513-353x.2018-0384.
doi: 10.16420/j.issn.0513-353x.2018-0384 |
[1] | 李梅, 施季森, 罗建中, 甘四明. 我国桉树遗传育种研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 41-50. |
[2] | 侯静, 毛金燕, 翟惠, 王洁, 尹佟明. CRISPR/Cas技术在木本植物改良中的应用[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 24-30. |
[3] | 程娟, 丁访军, 谭正洪, 廖立国, 周汀, 崔迎春. 贵州茂兰喀斯特森林两树种叶片气孔形态特征及其对蒸腾的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 125-132. |
[4] | 田呈明, 王笑连, 余璐, 韩珠. 林木与病原菌分子互作机制研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 1-12. |
[5] | 甘四明. 林木分子育种研究的基因组学信息资源述评[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 1-11. |
[6] | 王晶晶,毕华兴1,2,3,4*,孙于卜,段航旗,彭瑞东. 果树树冠遮阴模型的改进[J]. 南京林业大学学报(自然科学版), 2018, 42(05): 135-140. |
[7] | 勒栋梁,李永荣,彭方仁,刘壮壮. 薄壳山核桃采穗圃的构建与质量评价[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 134-140. |
[8] | 李梅. 杉木育种群体分子遗传变异及分子育种研究[J]. 南京林业大学学报(自然科学版), 2001, 25(05): 39-39. |
[9] | 刘艳;叶建仁. 植物病害潜伏侵染研究进展[J]. 南京林业大学学报(自然科学版), 2000, 24(05): 69-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||