南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (5): 235-241.doi: 10.12302/j.issn.1000-2006.202003006
收稿日期:
2020-03-03
接受日期:
2021-02-25
出版日期:
2021-09-30
发布日期:
2021-09-30
通讯作者:
徐侠
基金资助:
GUO Liang(), DING Jiuming, XU Xia*()
Received:
2020-03-03
Accepted:
2021-02-25
Online:
2021-09-30
Published:
2021-09-30
Contact:
XU Xia
摘要:
在全球变暖背景下,甲烷 (CH4) 作为陆地生态系统中仅次于CO2的重要温室气体受到了广泛关注,其在百年时间尺度上的温室效应潜力是CO2的28~34倍,对全球变暖的贡献占20%~30%。现有对森林生态系统CH4的研究主要集中在土壤,但基于热带森林地表排放估算和卫星CH4通量之间的差异报告,以及近年的研究证明了树木是森林CH4预算的重要来源和汇。笔者综合分析了树干CH4的来源、通量大小、影响因素及其对陆地碳预算的影响,结果发现:①树干释放出的CH4是来自土壤或者树木心材,然后主要通过树干扩散释放到空气中;②树干CH4的通量范围为(-37.5±18.75)~(16 937.50±6 812.50) μmol/(m2·h);③树干表面CH4通量具有较大的时空差异性,这些差异主要来自树种、年龄、组织类型、立地特征和环境条件等;④在不考虑树干CH4通量的前提下,森林湿地 (或木本沼泽) 生态系统的CH4释放量部分可能被低估,而旱地或者高山森林中CH4的吸收量部分可能被高估。树干甲烷作为陆地碳循环的“新成员”,应该被充分重视,这对于预测未来全球气候变化具有重要意义。
中图分类号:
郭亮,丁九敏,徐侠. 树干甲烷的研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 235-241.
GUO Liang, DING Jiuming, XU Xia. Advances in research on methane from tree stems[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(5): 235-241.DOI: 10.12302/j.issn.1000-2006.202003006.
表1
不同生态系统的树干CH4通量"
森林类型 forest type | 植物群落 plant community | 地理位置 geographical position | 树干测量 位置/cm emission surface | 通量/ (μmol·m-2·h-1) flux | 文献 Reference |
---|---|---|---|---|---|
亚热带红树林 | 秋茄 Kandelia obovata | 23°53'N, 117°30'E | 20~50 | (0.71±0.24)~(91.19 ±16.63) | [38] |
温带落叶林 | 水曲柳 Fraxinus mandshurica | 43°22'N, 141°36'E | 15 15 70 | 5.06~81.56 11.00 6.06 | [41] [42] |
温带落叶林 | 北美鹅掌楸 Liriodendron tulipifera等 | 38°51'N, 78°32'W | 30~60 | (4.3±0.81) ~(35.49±10.91) 1.59±0.88 | [20,22] |
温带落叶林 | 欧洲桤木 Alnus glutinosa | 52°0'N, 0°28'W | 20~50 | (6.71±0.83)~ (9.79 ±1.29) | [33] |
热带雨林 | 8种被子植物 | 2°20'S, 113°55'E | 20~130 | (1.06±0.9)~(11.56 ±0.44) | [13] |
热带雨林 | 多种被子植物 | 2°20'S~3°20'S, 54°55'~61°0'E | 15~140 | (1.00±2.50)~(16 937.50± 6 812.50) | [12] |
温带落叶林 | 北美鹅掌楸 L. tulipifera等 | 39°42'N, 75°50'W | 130 | 0.40±0.18 | [43] |
暖温带森林 | 山杨 Populus davidiana等 | 39°58'N, 115°26'E | 130 | 12.63~20.73, 5.33~6.44 | [11,19] |
温带森林 | 欧洲水青冈 Fagus sylvatica | 48°1'N,7°57'E | 120 | 1.87±3.31 | [23] |
寒温带森林 | 欧洲赤松 Pinus sylvestris | 61°51'N, 24°17'E | 20 | 0.000 31~0.006 3 | [21] |
温带森林 | 欧洲桤木 Alnus glutinosa | 52°00'N, 00°28'W | 30 | 0.26~6.31 | [10] |
温带森林 | 苦味山核桃 Carya cordiformis | 39°5'N, 75°26'W | 75 150 | 0.46±0.03 0.28±0.02 | [44] |
温带森林 | 无梗花栎 Quercus petraea | 48°29'N, 6°41'E | 25~45 | 0.032±0.022 | [45] |
亚热带森林 | 落羽杉 Taxodium distichum | 32°08'N, 81°25'W | <30, >300 | 2.34±0.78 | [46] |
热带红树林 | 白骨壤 Avicenna marina | 17°27'S, 140°48'E | 10~170 | 0.013~ 21.00, -3.77 ~168.15(死亡株) | [47] |
温带森林湿地 | 多种被子植物(死亡株) | 35°54'N, 76°09'W | 10-100 | 吸收-37.5±18.75,25.0±6.25 | [48] |
[1] | IPCC. Global warming of 1.5 ℃[R/OL]. Cambridge: Cambridge University Press, 2018.https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf. |
[2] |
HOEGH-GULDBERG O, JACOB D, TAYLOR M, et al. The human imperative of stabilizing global climate change at 1.5 degrees C[J]. Science, 2019, 365(6459):eaaw6974. DOI: 10.1126/science.aaw6974.
doi: 10.1126/science.aaw6974 |
[3] | IPCC. Climate change 2013-the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change[R/OL]. Cambridge: Cambridge University Press, 2014. https://www.cambridge.org/core/books. |
[4] |
WU J, LI Q, CHEN J W, et al. Afforestation enhanced soil CH4 uptake rate in subtropical China: evidence from carbon stable isotope experiments[J]. Soil Biology and Biochemistry, 2018, 118:199-206. DOI: 10.1016/j.soilbio.2017.12.017.
doi: 10.1016/j.soilbio.2017.12.017 |
[5] |
FLETCHER S E M, SCHAEFER H. Rising methane: a new climate challenge[J]. Science, 2019, 364(6444):932-933. DOI: 10.1126/science.aax1828.
doi: 10.1126/science.aax1828 |
[6] | 何姗, 刘娟, 姜培坤, 等. 全球变化对森林土壤甲烷吸收的影响及其机制研究进展[J]. 应用生态学报, 2019, 30(2):677-684. |
HE S, LIU J, JIANG P K, et al. Effects of global change on methane uptake in forest soils and its mechanisms:a review[J]. Chin J Appl Ecol, 2019, 30(2):677-684.DOI: 10.13287/j.1001-9332.201902.028.
doi: 10.13287/j.1001-9332.201902.028 |
|
[7] |
LE MER J, ROGER A P. Production, oxidation, emission and consumption of methane by soils: a review[J]. European Journal of Soil Biology, 2001, 37(1):25-50. DOI: 10.1016/S1164-5563(01)01067-6.
doi: 10.1016/S1164-5563(01)01067-6 |
[8] |
ALLEN G. Biogeochemistry: rebalancing the global methane budget[J]. Nature, 2016, 538(7623):46-48. DOI: 10.1038/538046a.
doi: 10.1038/538046a |
[9] |
SAUNOIS M, BOUSQUET P, POULTER B, et al. Variability and quasi-decadal changes in the methane budget over the period 2000-2012[J]. Atmospheric Chemistry and Physics, 2017, 17(18):11135-11161. DOI: 10.5194/acp-17-11135-2017.
doi: 10.5194/acp-17-11135-2017 |
[10] |
GAUCI V, GOWING D J G, HORNIBROOK E R C, et al. Woody stem methane emission in mature wetland alder trees[J]. Atmospheric Environment, 2010, 44(17):2157-2160. DOI: 10.1016/j.atmosenv.2010.02.034.
doi: 10.1016/j.atmosenv.2010.02.034 |
[11] |
WANG Z P, HAN S J, LI H L, et al. Methane production explained largely by water content in the heartwood of living trees in upland forests[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(10):2479-2489. DOI: 10.1002/2017JG003991.
doi: 10.1002/2017JG003991 |
[12] |
PANGALA S R, ENRICH-PRAST A, BASSO L S, et al. Large emissions from floodplain trees close the Amazon methane budget[J]. Nature, 2017, 552(7684):230-234. DOI: 10.1038/nature24639.
doi: 10.1038/nature24639 |
[13] |
PANGALA S R, MOORE S, HORNIBROOK E R, et al. Trees are major conduits for methane egress from tropical forested wetlands[J]. New Phytologist, 2013, 197:524-531. DOI: 10.1111/nph.12031.
doi: 10.1111/nph.12031 |
[14] |
FENG H L, GUO J H, HAN M H, et al. A review of the mechanisms and controlling factors of methane dynamics in forest ecosystems[J]. Forest Ecology and Management, 2020, 455:117702. DOI: 10.1016/j.foreco.2019.117702.
doi: 10.1016/j.foreco.2019.117702 |
[15] |
ZHANG T, ZHU W, MO J, et al. Increased phosphorus availability mitigates the inhibition of nitrogen deposition on CH4 uptake in an old-growth tropical forest, southern China[J]. Biogeosciences, 2011, 8(9):2805-2813. DOI: 10.5194/bg-8-2805-2011.
doi: 10.5194/bg-8-2805-2011 |
[16] |
CARMICHAEL M J, BERNHARDT E S, BRÄUER S L, et al. The role of vegetation in methane flux to the atmosphere: should vegetation be included as a distinct category in the global methane budget?[J]. Biogeochemistry, 2014, 119(1/3):1-24. DOI: 10.1007/s10533-014-9974-1.
doi: 10.1007/s10533-014-9974-1 |
[17] |
BRUHN D, MOLLER I M, MIKKELSEN T N, et al. Terrestrial plant methane production and emission[J]. Physiol Plant, 2012, 144(3):201-209. DOI: 10.1111/j.1399-3054.2011.01551.x.
doi: 10.1111/j.1399-3054.2011.01551.x |
[18] |
COVEY K R, MEGONIGAL J P. Methane production and emissions in trees and forests[J]. New Phytol, 2019, 22(1):35-51. DOI: 10.1111/nph.15624.
doi: 10.1111/nph.15624 |
[19] |
WANG Z P, GU Q, DENG F D, et al. Methane emissions from the trunks of living trees on upland soils[J]. New Phytol, 2016, 211(2):429-439. DOI: 10.1111/nph.13909.
doi: 10.1111/nph.13909 |
[20] |
PITZ S L, MEGONIGAL J P, CHANG C H, et al. Methane fluxes from tree stems and soils along a habitat gradient[J]. Biogeochemistry, 2018, 137(3):307-320. DOI: 10.1007/s10533-017-0400-3.
doi: 10.1007/s10533-017-0400-3 |
[21] |
MACHACOVA K, BACK J, VANHATALO A, et al. Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest[J]. Sci Rep, 2016, 6:23410. DOI: 10.1038/srep23410.
doi: 10.1038/srep23410 |
[22] |
PITZ S, MEGONIGAL J P. Temperate forest methane sink diminished by tree emissions[J]. New Phytol, 2017, 214(4):1432-1439. DOI: 10.1111/nph.14559.
doi: 10.1111/nph.14559 |
[23] |
MAIER M, MACHACOVA K, LANG F, et al. Combining soil and tree-stem flux measurements and soil gas profiles to understand CH4 pathways in Fagus sylvatica forests[J]. J Plant Nutr Soil Sci, 2018, 181(1):31-35. DOI: 10.1002/jpln.201600405.
doi: 10.1002/jpln.201600405 |
[24] |
YIP D Z, VEACH A M, YANG Z K, et al. Methanogenic archaea dominate mature heartwood habitats of eastern Cottonwood (Populus deltoides)[J]. New Phytologist, 2018, 222(1):115-121. DOI: 10.1111/nph.15346.
doi: 10.1111/nph.15346 |
[25] |
BARBA J, BRADFORD M A, BREWER P E, et al. Methane emissions from tree stems: a new frontier in the global carbon cycle[J]. New Phytol, 2018, 2019(222):18-28. DOI: 10.1111/nph.15582.
doi: 10.1111/nph.15582 |
[26] |
SCHINK B, WARD J C. Microaerobic and anaerobic bacterial activities involved in formation of wetwood and discoloured wood[J]. International Association of Wood Anatomist Bulletin, 1984, 5(5):105-109. DOI: 10.1163/22941932-90000872.
doi: 10.1163/22941932-90000872 |
[27] |
COVEY K R, WOOD S R, WARREN R J, et al. Elevated methane concentrations in trees of an upland forest[J]. Geophy Resea Lett, 2012, 39(15):L15705. DOI: 10.1029/2012gl052361.
doi: 10.1029/2012gl052361 |
[28] |
GARTNER B L, MOORE J R, GARDINER B A. Gas in stems: abundance and potential consequences for tree biomechanics[J]. Tree Physiology, 2004, 24(11):1239-1250. DOI: 10.1093/treephys/24.11.1239
doi: 10.1093/treephys/24.11.1239 |
[29] |
DREW M C, HE C J, MORGAN P W. Programmed cell death and aerenchyma formation in roots[J]. Trends Plant Sci, 2000, 5(3):123-127. DOI: 10.1016/S1360-1385(00)01570-3.
doi: 10.1016/S1360-1385(00)01570-3 |
[30] |
EVANS D E. Aerenchyma formation[J]. New Phytologist, 2004, 161(1):35-49. DOI: 10.1046/j.1469-8137.2003.00907.x.
doi: 10.1046/j.1469-8137.2003.00907.x |
[31] |
JACKSON M, ARMSTRONG W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence[J]. Plant Biology, 1999, 1(3):274-287. DOI: 10.1111/j.1438-8677.1999.t600253x.
doi: 10.1111/j.1438-8677.1999.t600253x |
[32] |
RICE A L, BUTENHOFF C L, SHEARER M J, et al. Emissions of anaerobically produced methane by trees[J]. Geophy Resea Lett, 2010, 37(3):L03807. DOI: 10.1029/2009gl041565.
doi: 10.1029/2009gl041565 |
[33] |
PANGALA S R, HORNIBROOK E R C, GOWING D J, et al. The contribution of trees to ecosystem methane emissions in a temperate forested wetland[J]. Global Change Biology, 2015, 21(7):2642-2654. DOI: 10.1111/gcb.12891.
doi: 10.1111/gcb.12891 |
[34] |
ARMSTRONG W. Aeration in higher plants[J]. Advances in botanical research, 1980, 7:225-332. DOI: 10.1016/s0065-2296(08)60089-0.
doi: 10.1016/s0065-2296(08)60089-0 |
[35] |
MEGONIGAL J P, GUENTHER A B. Methane emissions from upland forest soils and vegetation[J]. Tree Physiology, 2008, 28(4):491-498. DOI: 10.1093/treephys/28.4.491.
doi: 10.1093/treephys/28.4.491 |
[36] |
IKEDA S, KANEKO T, OKUBO T, et al. Development of a bacterial cell enrichment method and its application to the community analysis in soybean stems[J]. Microb Ecol, 2009, 58(4):703-714. DOI: 10.1007/s00248-009-9566-0.
doi: 10.1007/s00248-009-9566-0 |
[37] |
CONRAD R. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal[J]. Organic Geochemistry, 2005, 36(5):739-752. DOI: 10.1016/j.orggeochem.2004.09.006.
doi: 10.1016/j.orggeochem.2004.09.006 |
[38] | 张雨雪, 黄佳芳, 罗敏, 等. 漳江口不同潮滩秋茄树干CH4传输速率与呼吸速率[J]. 环境科学研究, 2019, 32(5):840-847. |
ZHANG Y X, HUANG J F, LUO M, et al. Rate of methane transport and respiration from the stem of mangrove Kandelia obovata at different part of intertidal zone in Zhangjiang River estuary[J]. Research of Environmental Sciences, 2019, 32(5):840-847. DOI: 10.13198/j.issn.1001-6929.2018.09.14.
doi: 10.13198/j.issn.1001-6929.2018.09.14 |
|
[39] |
WELCH B, GAUCI V, SAYER E J. Tree stem bases are sources of CH4 and N2O in a tropical forest on upland soil during the dry to wet season transition[J]. Glob Change Biol, 2019, 25(1):361-372. DOI: 10.1111/gcb.14498.
doi: 10.1111/gcb.14498 |
[40] |
SIEGENTHALER A, WELCH B, PANGALA S R, et al. Technical note: semi-rigid chambers for methane gas flux measurements on tree stems[J]. Biogeosciences, 2016, 13(4):1197-1207. DOI: 10.5194/bg-13-1197-2016.
doi: 10.5194/bg-13-1197-2016 |
[41] |
TERAZAWA K, YAMADA K, OHNO Y, et al. Spatial and temporal variability in methane emissions from tree stems of Fraxinus mandshurica in a cool-temperate floodplain forest[J]. Biogeochemistry, 2015, 123(3):349-362. DOI: 10.1007/s10533-015-0070-y.
doi: 10.1007/s10533-015-0070-y |
[42] |
TERAZAWA K, ISHIZUKA S, SAKATA T, et al. Methane emissions from stems of Fraxinus mandshurica var. japonica trees in a floodplain forest[J]. Soil Biology and Biochemistry, 2007, 39(10):2689-2692. DOI: 10.1016/j.soilbio.2007.05.013.
doi: 10.1016/j.soilbio.2007.05.013 |
[43] |
WARNER D L, VILLARREAL S, MCWILLIAMS K, et al. Carbon dioxide and methane fluxes from tree stems, coarse woody debris, and soils in an upland temperate forest[J]. Ecosystems, 2017, 20(6):1205-1216. DOI: 10.1007/s10021-016-0106-8.
doi: 10.1007/s10021-016-0106-8 |
[44] |
BARBA J, POYATOS R, VARGAS R. Automated measurements of greenhouse gases fluxes from tree stems and soils: magnitudes, patterns and drivers[J]. Sci Rep, 2019, 9(1):4005. DOI: 10.1038/s41598-019-39663-8.
doi: 10.1038/s41598-019-39663-8 |
[45] |
PLAIN C, NDIAYE F K, BONNAUD P, et al. Impact of vegetation on the methane budget of a temperate forest[J]. New Phytol, 2019, 221(3):1447-1456. DOI: 10.1111/nph.15452.
doi: 10.1111/nph.15452 |
[46] |
PULLIAM W. Methane emissions from cypress knees in a southeastern floodplain swamp[J]. Oecologia, 1992, 91(1):126-128. DOI: 10.1007/BF00317250.
doi: 10.1007/BF00317250 |
[47] |
JEFFREY L C, REITHMAIER G, SIPPO J Z, et al. Are methane emissions from mangrove stems a cryptic carbon loss pathway? Insights from a catastrophic forest mortality[J]. New Phytol, 2019, 224(1):146-154 DOI: 10.1111/nph.15995.
doi: 10.1111/nph.15995 |
[48] |
ZUCCARINI P, ASENSIO D, OGAYA R, et al. Effects of seasonal and decadal warming on soil enzymatic activity in a P-deficient Mediterranean shrubland[J]. Glob Change Biol, 2020, 26(6):3968-3714. DOI: 10.1111/gcb.15077.
doi: 10.1111/gcb.15077 |
[49] |
KALACHANIS D, PSARAS G K, Structural changes in primary lenticels of Olea europaea and Cercis siliquastrum during the year[J]. IAWA Journal, 2007, 28(4):445-456. DOI: 10.1163/22941932-90001654.
doi: 10.1163/22941932-90001654 |
[50] |
PANGALA S R, GOWING D J, HORNIBROOK E R C, et al. Controls on methane emissions from Alnus glutinosa saplings[J]. New Phytol, 2014, 201(3):887-896. DOI: 10.1111/nph.12561.
doi: 10.1111/nph.12561 |
[51] |
CONRAD R, KLOSE M. Anaerobic conversion of carbon dioxide to methane, acetate and propionate on washed rice roots[J]. FEMS Microbiology Ecology, 1999, 30(2):147-155. DOI: 10.1016/S0168-6496(99)00048-3.
doi: 10.1016/S0168-6496(99)00048-3 |
[52] |
OBERLE B, COVEY K R, DUNHAM K M, et al. Dissecting the effects of diameter on wood decay emphasizes the importance of cross-stem conductivity in Fraxinus americana[J]. Ecosystems, 2018, 21(1):85-97. DOI: 10.1007/s10021-017-0136-x.
doi: 10.1007/s10021-017-0136-x |
[53] |
GARNET K N, MEGONIGAL J P, LITCHFIEL D C, et al. Physiological control of leaf methane emission from wetland plants[J]. Aquatic Botany, 2005, 81(2):141-155. DOI: 10.1016/j.aquabot.2004.10.003.
doi: 10.1016/j.aquabot.2004.10.003 |
[54] |
MEGONIGAL J P, PATRICK W H Jr, FAULKNER S P. Wetland identification in seasonally flooded forest soils: soil morphology and redox dynamics[J]. Soil Science Society of America Journal, 1993, 57(1):140-149. DOI: 10.2136/sssaj1993.03615995005700010027x.
doi: 10.2136/sssaj1993.03615995005700010027x |
[55] |
TOPP E, PATTEY E. Soils as sources and sinks for atmospheric methane[J]. Canadian Journal of Soil Science, 1997, 77(2):167-177. DOI: 10.4141/S96-107.
doi: 10.4141/S96-107 |
[56] |
KIRSCHKE S, BOUSQUET P, CIAIS P, et al. Three decades of global methane sources and sinks[J]. Nature Geoscience, 2013, 6(10):813-823. DOI: 10.1038/ngeo1955.
doi: 10.1038/ngeo1955 |
[57] |
KEPPLER F, HAMILTON J T, BRASS M, et al. Methane emissions from terrestrial plants under aerobic conditions[J]. Nature, 2006, 439(7073):187-191. DOI: 10.1038/nature04420.
doi: 10.1038/nature04420 |
[58] |
SAUNOIS M, BOUSQUET P, POULTER B, et al. The global methane budget 2000-2012[J]. Earth System Science Data, 2016, 8(2):697-751. DOI: 10.5194/essd-8-697-2016.
doi: 10.5194/essd-8-697-2016 |
[1] | 林杰, 张相, 姜姜, 蒯杰, 郭赓, 孟苗婧, 李肖. 水力侵蚀过程中土壤有机碳循环研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 187-194. |
[2] | 黄梓敬, 徐侠, 张惠光, 蔡斌, 李良彬. 根系输入对森林土壤碳库及碳循环的影响研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 25-32. |
[3] | 于辉,陈燕,张欢,周志勇. 添加无机氮对山西太岳山油松林土壤氮素及温室气体通量的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(03): 85-91. |
[4] | 陈家新,杨红强. 全球森林及林产品碳科学研究进展与前瞻[J]. 南京林业大学学报(自然科学版), 2018, 42(04): 1-8. |
[5] | 高菲,高雷,崔晓阳. 森林土壤温室气体通量对森林管理和全球大气变化的响应[J]. 南京林业大学学报(自然科学版), 2017, 41(04): 173-180. |
[6] | 刘翔,韩建刚,李兰海,朱咏莉. 生物炭添加对土壤冻融过程中温室气体排放的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(03): 15-21. |
[7] | 原磊磊,陈幸良. 伐木制品碳储量计量方法的比较[J]. 南京林业大学学报(自然科学版), 2014, 38(03): 149-154. |
[8] | 李平,王国兵,郑阿宝,沈玉娟,赵琦齐,王琳飞,蒋如生,李莉,阮宏华. 苏南丘陵区4种典型人工林土壤活性有机碳分布特征[J]. 南京林业大学学报(自然科学版), 2012, 36(04): 79-83. |
[9] | 王邵军,阮宏华. 全球变化背景下森林生态系统碳循环及其管理[J]. 南京林业大学学报(自然科学版), 2011, 35(02): 113-116. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||