南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (5): 53-61.doi: 10.12302/j.issn.1000-2006.202103051
陈黎1(), 刘成功2, 钱莹莹1, 唐晓蝶1, 王生树1, 李志东1, 李燕1, 崔珺1
收稿日期:
2021-03-30
接受日期:
2021-06-11
出版日期:
2021-09-30
发布日期:
2021-09-30
基金资助:
CHEN Li1(), LIU Chenggong2, QIAN Yingying1, TANG Xiaodie1, WANG Shengshu1, LI Zhidong1, LI Yan1, CUI Jun1
Received:
2021-03-30
Accepted:
2021-06-11
Online:
2021-09-30
Published:
2021-09-30
摘要:
【目的】 研究南方红豆杉人工林针叶C、N、P生态化学计量和养分重吸收特征,揭示南方红豆杉的养分限制格局和养分高效利用策略,为南方红豆杉人工林的高质量种植栽培提供理论依据。【方法】 以9年生南方红豆杉人工林为研究对象,通过测定其针叶碳(C)、氮(N)、磷(P)元素含量,分析针叶的生态化学计量、养分重吸收率及其相互关系。【结果】 南方红豆杉针叶C、N、P平均含量分别为479.67、22.52和2.21 g/kg,碳氮质量比(C:N)、碳磷质量比(C:P)、氮磷质量比(N:P)分别为21.74、226.25和10.55;N与P、C含量均呈极显著正相关,P与C含量呈显著正相关;生长季中,南方红豆杉针叶C含量最稳定,变异系数为3.90%,P含量的变异系数(22.43%)大于N(15.34%)。研究区南方红豆杉在生长季(6—11月)针叶C与N含量均表现为先平缓上升后显著下降趋势,8月达到高峰并持续到9月,C含量10月最低,N含量11月最低;P含量则表现为先显著上升后显著下降的趋势,在9月达到峰值,且显著大于其他各月份;针叶中C:N和N:P的变化比C:P更稳定,且P含量决定了C:P和N:P的动态变化。南方红豆杉针叶N重吸收率和P重吸收率分别为19.33%和22.16%,且P重吸收率与衰老叶P含量、C:P呈显著负相关,与N:P呈显著正相关。【结论】 研究区内,9年生南方红豆杉人工林针叶具备较好的C储存能力和养分资源竞争力,N、P重吸收率较低,养分在针叶中的驻留时间较长,生长未受到N、P限制。
中图分类号:
陈黎,刘成功,钱莹莹,等. 南方红豆杉人工林针叶C、N、P化学计量特征[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 53-61.
CHEN Li, LIU Chenggong, QIAN Yingying, TANG Xiaodie, WANG Shengshu, LI Zhidong, LI Yan, CUI Jun. Stoichiometric characteristics of C, N, P of Taxus chinensis var. mairei plantation needles[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(5): 53-61.DOI: 10.12302/j.issn.1000-2006.202103051.
表1
南方红豆杉人工林针叶元素含量及其变异系数"
统计值 statistics | 元素含量/(g·kg-1) element content | 比值ratio | ||||
---|---|---|---|---|---|---|
C | N | P | C∶N | C∶P | N∶P | |
均值 mean | 479.67± 18.73 | 22.52± 3.45 | 2.21± 0.50 | 21.74± 3.00 | 226.25± 46.58 | 10.55± 2.34 |
极大值 max. | 509.90 | 32.90 | 4.01 | 28.22 | 312.53 | 16.16 |
极小值 min. | 418.20 | 15.50 | 1.54 | 14.35 | 125.88 | 5.60 |
全距 range | 91.70 | 17.40 | 2.47 | 13.87 | 186.65 | 10.56 |
变异系数/% CV | 3.90 | 15.34 | 22.43 | 13.80 | 20.59 | 22.13 |
表3
针叶养分浓度及其化学计量比与重吸收率的相关性"
y | x | 成熟叶mature leaves | 衰老叶senescent leaves | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
方程equation | R2 | P | 方程equation | R2 | P | ||||||||
N重吸 收率 NRE | c(C) | y=0.181 x-69.393 | 0.014 | 0.371 | y =-0.025 x+42.312 | 0.009 | 0.132 | ||||||
c(N) | y=0.845 x-1.282 | 0.116 | 0.168 | y =-1.172 x+42.312 | 0.153 | 0.399 | |||||||
c(P) | y= 7.966 x-1.282 | 0.136 | 0.145 | y=8.209 x+3.269 | 0.134 | 0.151 | |||||||
C∶N | y =-0.930 x+38.217 | 0.107 | 0.179 | y=1.188 x+3.269 | 0.163 | 0.124 | |||||||
C∶P | y =-0.104 x+40.529 | 0.129 | 0.154 | y =-0.061 x+34.325 | 0.122 | 0.161 | |||||||
N∶P | y =-0.352 x+22.874 | 0.002 | 0.448 | y =-1.339 x+33.118 | 0.194 | 0.101 | |||||||
P重吸 收率 PRE | c(C) | y =-0.217 x+128.500 | 0.010 | 0.061 | y=0.044 x+1.353 | 0.018 | 0.107 | ||||||
c(N) | y=1.933 x-25.767 | 0.307 | 0.398 | y=1.624 x-11.053 | 0.210 | 0.365 | |||||||
c(P) | y=6.149 x+6.974 | 0.046 | 0.292 | y =-17.824 x+56.336 | 0.345 | 0.047 | |||||||
C∶N | y =-2.272 x+67.454 | 0.309 | 0.060 | y =-1.943 x+68.081 | 0.293 | 0.066 | |||||||
C∶P | y =-0.097 x+41.670 | 0.061 | 0.260 | y =-1.909 x+67.265 | 0.283 | 0.026 | |||||||
N∶P | y=3.267 x-10.820 | 0.117 | 0.183 | y=3.106 x-11.709 | 0.534 | 0.013 |
[1] |
ÅGREN G I. Stoichiometry and nutrition of plant growth in natural communities[J]. Annu Rev Ecol, Evol, Syst, 2008, 39(1):152-170. DOI: 10.1146/ANNUREV.ECOLSYS.39.110707.173515.
doi: 10.1146/ANNUREV.ECOLSYS.39.110707.173515 |
[2] |
GÜSEWELL S. N:P ratios in terrestrial plants: variation and functional significance[J]. New Phytol, 2004, 164(2):243-266. DOI: 10.1111/j.1469-8137.2004.01192.x.
doi: 10.1111/j.1469-8137.2004.01192.x |
[3] |
TANG Z Y, XU W T, ZHOU G Y, et al. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems[J]. PNAS, 2018, 115(26):E6095-E6096. DOI: 10.1073/pnas.1808126115.
doi: 10.1073/pnas.1808126115 |
[4] |
ELSER J J, BRACKEN M E S, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecol Lett, 2007, 10(12):1135-1142. DOI: 10.1111/j.1461-0248.2007.01113.x.
doi: 10.1111/j.1461-0248.2007.01113.x |
[5] |
REICH P B. Global biogeography of plant chemistry: filling in the blanks[J]. New Phytol, 2005, 168(2):263-266. DOI: 10.1111/j.1469-8137.2005.01562.x.
doi: 10.1111/j.1469-8137.2005.01562.x |
[6] |
YANG Y, LIU B R, AN S S. Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of northern China[J]. CATENA, 2018, 166:328-338. DOI: 10.1016/j.catena.2018.04.018.
doi: 10.1016/j.catena.2018.04.018 |
[7] | 胡小燕, 段爱国, 张建国, 等. 广西大青山杉木人工林碳氮磷生态化学计量特征[J]. 生态学报, 2020, 40(4):1207-1218. |
HU X Y, DUAN A G, ZHANG J G, et al. Stoichiometry of carbon, nitrogen, and phosphorus of Chinese fir plantations in Daqing Mountain, Guangxi[J]. Acta Ecol Sin, 2020, 40(4):1207-1218. DOI: 10.5846/stxb201812192754.
doi: 10.5846/stxb201812192754 |
|
[8] | 勒佳佳, 苏原, 罗艳, 等. 围封对天山高寒草原4种植物叶片和土壤化学计量学特征的影响[J]. 生态学报, 2020, 40(5):1621-1628. |
LE J J, SU Y, LUO Y, et al. Effects of enclosure on leaves of four plants and soil stoichiometry in an alpine grassland of Tianshan Mountains[J]. Acta Ecol Sin, 2020, 40(5):1621-1628. DOI: 10.5846/stxb201901130107.
doi: 10.5846/stxb201901130107 |
|
[9] | 邓健, 种玉洁, 贾小敏, 等. 黄土高原子午岭林区典型树种叶片N、P再吸收特征[J]. 生态学报, 2020, 40(11):3698-3705. |
DENG J, CHONG Y J, JIA X M, et al. Leaf N and P resorption characteristics of typical tree species in the Ziwuling forest area on Loess Plateau[J]. Acta Ecol Sin, 2020, 40(11):3698-3705. DOI: 10.5846/stxb201906201294.
doi: 10.5846/stxb201906201294 |
|
[10] |
AI Z M, HE L R, XIN Q, et al. Slope aspect affects the non-structural carbohydrates and C:N:P stoichiometry of Artemisia sacrorum on the Loess Plateau in China[J]. Catena, 2017, 152:9-17. DOI: 10.1016/j.catena.2016.12.024.
doi: 10.1016/j.catena.2016.12.024 |
[11] |
RONG Q Q, LIU J T, CAI Y P, et al. Leaf carbon, nitrogen and phosphorus stoichiometry of Tamarix chinensis Lour. in the Laizhou Bay coastal wetland, China[J]. Ecol Eng, 2015, 76:57-65. DOI: 10.1016/j.ecoleng.2014.03.002.
doi: 10.1016/j.ecoleng.2014.03.002 |
[12] |
SARDANS J, ALONSO R, CARNICER J, et al. Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain[J]. Perspect Plant Ecol Evol Syst, 2016, 18:52-69. DOI: 10.1016/j.ppees.2016.01.001.
doi: 10.1016/j.ppees.2016.01.001 |
[13] |
KILLINGBECK K T. The terminological jungle revisited: making a case for use of the term resorption[J]. Oikos, 1986, 46(2):263-264. DOI: 10.2307/3565477.
doi: 10.2307/3565477 |
[14] | 罗芊芊, 楚秀丽, 李峰卿, 等. 5年生南方红豆杉生长和分枝性状家系变异与选择[J]. 林业科学研究, 2020, 33(1):136-143. |
LUO Q Q, CHU X L, LI F Q, et al. Family variation and selection of growth and branching traits of 5-year-old Taxus wallichiana var. mairei[J]. For Res, 2020, 33(1):136-143. DOI: 10.13275/j.cnki.lykxyj.2020.01.018.
doi: 10.13275/j.cnki.lykxyj.2020.01.018 |
|
[15] | 欧建德, 吴志庄. 幼龄南方红豆杉人工林树冠形态特征与生长形质通径分析[J]. 南京林业大学学报(自然科学版), 2019, 43(4):185-191. |
OU J D, WU Z Z. Path analysis between canopymorphological characteristics and growth form quality of Taxus chinensis var. mairei plantation at young age[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(4):185-191. DOI: 10.3969/j.issn.1000-2006.201805011.
doi: 10.3969/j.issn.1000-2006.201805011 |
|
[16] | 李先琨, 向悟生, 苏宗明. 南方红豆杉无性系种群结构和动态研究[J]. 应用生态学报, 2004, 15(2):177-180. |
LI X K, XIANG W S, SU Z M. Structure and dynamics of Taxus chinensis var. mairei clonal population[J]. Chin J Appl Ecol, 2004, 15(2):177-180. DOI: 10.13287/j.1001-9332.2004.0042.
doi: 10.13287/j.1001-9332.2004.0042 |
|
[17] | 费永俊, 龚秀红. 南方红豆杉表型多样性及变异[J]. 湖北农学院学报, 2001, 21(4):310-313. |
FEI Y J, GONG X H. Phenotypic diversity and variation of Taxus chinensis var. mairei[J]. J Hubei Agric Coll, 2001, 21(4):310-313. | |
[18] |
POORTER L, BONGERS F. Leaf traits are good predictors of plant performance across 53 rain forest species[J]. Ecology, 2006, 87(7):1733-1743. DOI: 10.1890/0012-9658(2006)87[1733:ltagpo]2.0.CO;2.
doi: 10.1890/0012-9658(2006)87 |
[19] |
ELSER J J, FAGAN W F, DENNO R F, et al. Nutritional constraintsin terrestrial and freshwater food webs[J]. Nature, 2000, 408(6812):578-580. DOI: 10.1038/35046058.
doi: 10.1038/35046058 |
[20] |
REICH R B, OLEKSYN J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. PNAS, 2004, 101(30):11001-11006. DOI: 10.1073/pnas.0403588101.
doi: 10.1073/pnas.0403588101 |
[21] | 原雅楠, 李正才, 王斌, 等. 榧树种内C、N、P生态化学计量特征研究[J]. 林业科学研究, 2019, 32(6):73-79. |
YUAN Y N, LI Z C, WANG B, et al. Stoichiometric characteristics of C,N and P in different varieties of Torreya grandis[J]. For Res, 2019, 32(6):73-79. DOI: 10.13275/j.cnki.lykxyj.2019.06.010.
doi: 10.13275/j.cnki.lykxyj.2019.06.010 |
|
[22] | 崔浩, 张前前, 陈明月, 等. 鄱阳湖南矶湿地22种植物根系碳氮及其化学计量研究[J]. 生态学报, 2020, 40(3):864-873. |
CUI H, ZHANG Q Q, CHEN M Y, et al. Root C, N and C:N stoichiometry of 22 plant species in Nanji wetlands of Poyang Lake[J]. Acta Ecol Sin, 2020, 40(3):864-873. DOI: 10.5846/stxb201811012357.
doi: 10.5846/stxb201811012357 |
|
[23] |
ZHANG G Q, ZHANG P, PENG S Z, et al. The coupling of leaf, litter, and soil nutrients in warm temperate forests in northwestern China[J]. Sci Rep, 2017, 7(1):11754. DOI: 10.1038/s41598-017-12199-5.
doi: 10.1038/s41598-017-12199-5 |
[24] |
HAN W X, FANG J Y, GUO D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytol, 2005, 168(2):377-385. DOI: 10.1111/j.1469-8137.2005.01530.x.
doi: 10.1111/j.1469-8137.2005.01530.x |
[25] |
杨文高, 字洪标, 陈科宇, 等. 青海森林生态系统中灌木层和土壤生态化学计量特征[J]. 植物生态学报, 2019, 43(4):352-364.
doi: 10.17521/cjpe.2018.0326 |
YANG W G, ZI H B, CHEN K Y, et al. Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China[J]. Chin J Plant Ecol, 2019, 43(4):352-364. DOI: 10.17521/cjpe.2018.0326.
doi: 10.17521/cjpe.2018.0326 |
|
[26] |
PAN F J, ZHANG W, LIU S, et al. Leaf N:P stoichiometry across plant functional groups in the Karst region of southwestern China[J]. Trees, 2015, 29(3):883-892. DOI: 10.1007/s00468-015-1170-y.
doi: 10.1007/s00468-015-1170-y |
[27] | STERNER R W, ELSER J J. Ecological stoichiometry: the biology of elements from molecules to the biosphere[EB/OL]. https://doi.org/10.1093/plankt/25.9.1183,2002 . |
[28] | 吴鹏, 崔迎春, 赵文君, 等. 茂兰喀斯特区68种典型植物叶片化学计量特征[J]. 生态学报, 2020, 40(14):5063-5080. |
WU P, CUI Y C, ZHAO W J, et al. Leaf stoichiometric characteristics of 68 typical plant species in Maolan National Nature Reserve, Guizhou, China[J]. Acta Ecol Sin, 2020, 40(14):5063-5080. DOI: 10.5846/stxb201904080678.
doi: 10.5846/stxb201904080678 |
|
[29] | 张藤子, 李亚楠, 韩飞燕, 等. 辽西两种油松混交林土壤及油松叶片C:N:P化学计量特征[J]. 生态学杂志, 2018, 37(10):3061-3067. |
ZHANG T Z, LI Y N, HAN F Y, et al. C:N:P stoichiometry of Pinus tabuliformis leaf and soil in two mixed stands in western Liaoning Province[J]. Chin J Ecol, 2018, 37(10):3061-3067. DOI: 10.13292/j.1000-4890.201810.015.
doi: 10.13292/j.1000-4890.201810.015 |
|
[30] | 仇宏格, 杨秀清, 梁楠, 等. 基于叶片性状变化下云杉幼苗更新的C, N, P调控机制[J]. 山西农业科学, 2019, 47(3):329-333. |
QIU H G, YANG X Q, LIANG N, et al. Regulation mechanism of C, N and P on Picea aspoerata seedling regeneration based on leaf traits change[J]. J Shanxi Agric Sci, 2019, 47(3):329-333. DOI: 10.3969/j.issn.1002-2481.2019.03.09.
doi: 10.3969/j.issn.1002-2481.2019.03.09 |
|
[31] |
TIAN D, YAN Z B, MA S H, et al. Family-level leaf nitrogen and phosphorus stoichiometry of global terrestrial plants[J]. Sci China Life Sci, 2019, 62(8):1047-1057. DOI: 10.1007/s11427-019-9584-1.
doi: 10.1007/s11427-019-9584-1 |
[32] | 柯立, 崔珺, 杨佳, 等. 安徽石台亚热带常绿阔叶林植物叶中C、N、P特征分析[J]. 南京林业大学学报(自然科学版), 2014, 38(6):28-32. |
KE L, CUI J, YANG J, et al. Foliar C, N and P stoichiometry in subtropical evergreen broad-leaf forestin Shitai County, Anhui Province[J]. J Nanjing For Univ (Nat Sci Ed), 2014, 38(6):28-32. DOI: 10.3969/j.issn.1000-2006.2014.06.006.
doi: 10.3969/j.issn.1000-2006.2014.06.006 |
|
[33] | 张志录, 刘中华, 陈明辉. 伏牛山区红豆杉不同叶龄叶片性状对海拔梯度的响应[J]. 福州大学学报(自然科学版), 2019, 47(2):265-271,278. |
ZHANG Z L, LIU Z H, CHEN M H. Effects of altitude gradient on the leaf traits at different leaf age of Taxus chinensis in Funiu area[J]. J Fuzhou Univ (Nat Sci Ed), 2019, 47(2):265-271, 278. DOI: 10.7631/issn.1000-2243.18234.
doi: 10.7631/issn.1000-2243.18234 |
|
[34] |
KOERSELMAN W, MEULEMAN A F M. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation[J]. J Appl Ecol, 1996, 33(6):1441-1450.DOI: 10.2307/2404783.
doi: 10.2307/2404783 |
[35] | 杨承栋. 我国人工林土壤有机质的量和质下降是制约林木生长的关键因子[J]. 林业科学, 2016, 52(12):1-12. |
YANG C D. Decline of quantity and quality of soil organic matter is the key factorrestricting the growth of plantation in China[J]. Sci Silvae Sin, 2016, 52(12):1-12. DOI: 10.11707/j.1001-7488.20161201.
doi: 10.11707/j.1001-7488.20161201 |
|
[36] |
贺合亮, 阳小成, 李丹丹, 等. 青藏高原东部窄叶鲜卑花碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41(1):126-135.
doi: 10.17521/cjpe.2016.0031 |
HE H L, YANG X C, LI D D, et al. Stoichiometric characteristics of carbon, nitrogen and phosphorus of Sibiraea angustata shrub on the eastern Qinghai-Xizang Plateau[J]. Chin J Plant Ecol, 2017, 41(1):126-135. DOI: 10.17521/cjpe.2016.0031.
doi: 10.17521/cjpe.2016.0031 |
|
[37] | 罗艳, 贡璐, 朱美玲, 等. 塔里木河上游荒漠区4种灌木植物叶片与土壤生态化学计量特征[J]. 生态学报, 2017, 37(24):8326-8335. |
LUO Y, GONG L, ZHU M L, et al. Stoichiometry characteristics of leaves and soil of four shrubs in the upper reaches of the Tarim River Desert[J]. Acta Ecol Sin, 2017, 37(24):8326-8335. DOI: 10.5846/stxb201611222379.
doi: 10.5846/stxb201611222379 |
|
[38] |
LIH L, CRABBE M J C, XU F L, et al. Seasonal variations in carbon, nitrogen and phosphorus concentrations and C:N:P stoichiometry in different organs of a Larix principis-rupprechtii Mayr. plantation in the Qinling Mountains, China[J]. PLoS One, 2017, 12(9):e0185163. DOI: 10.1371/journal.pone.0185163.
doi: 10.1371/journal.pone.0185163 |
[39] | 周磊, 吴慧, 王树力. 不同林分红皮云杉针叶养分含量及生态化学计量特征研究[J]. 植物资源与环境学报, 2020, 29(3):19-25, 33. |
ZHOU L, WU H, WANG S L. Study on nutrient contents and ecological stoichiometric characteristics in needles of Picea koraiensis in different stands[J]. J Plant Resou rEnviron, 2020, 29(3):19-25, 33. DOI: 10.3969/j.issn.1674-7895.2020.03.03.
doi: 10.3969/j.issn.1674-7895.2020.03.03 |
|
[40] | 李川, 朱陈名, 葛之葳, 等. 芦苇与土壤间氮磷化学计量的灰色关联分析[J]. 南京林业大学学报(自然科学版), 2016, 40(2):16-20. |
LI C, ZHU C M, GE Z W, et al. Gray correlation analysis on nitrogen and phosphorus stoichiometrybetween Phragmites australis and soil[J]. J Nanjing For Univ (Nat Sci Ed), 2016, 40(2):16-20. DOI: 10.3969/j.issn.1000-2006.2016.02.003.
doi: 10.3969/j.issn.1000-2006.2016.02.003 |
|
[41] |
MATZEK V, VITOUSEK P M. N:P stoichiometry and protein:RNA ratios in vascular plants: an evaluation of the growth-rate hypojournal[J]. Ecol Lett, 2009, 12(8):765-771. DOI: 10.1111/j.1461-0248.2009.01310.x.
doi: 10.1111/j.1461-0248.2009.01310.x |
[42] |
TULLY K L, WOOD T E, SCHWANTES A M, et al. Soil nutrient availability and reproductive effort drive patterns in nutrient resorption in Pentaclethra macroloba[J]. Ecology, 2013, 94(4):930-940. DOI: 10.1890/12-0781.1.
doi: 10.1890/12-0781.1 |
[43] |
VERGUTZ L, MANZONI S, PORPORATO A, et al. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants[J]. Ecol Monogr, 2012, 82(2):205-220. DOI: 10.1890/11-0416.1.
doi: 10.1890/11-0416.1 |
[44] |
EDWARDS E J, CHATELET D S, SACK L, et al. Leaf life span and the leaf economic spectrum in the context of whole plant architecture[J]. J Ecol, 2014, 102(2):328-336. DOI: 10.1111/1365-2745.12209.
doi: 10.1111/1365-2745.12209 |
[45] | 樊博, 何光熊, 史亮涛, 等. 干热河谷草本植物叶片养分含量与养分再吸收效率的种间差异[J]. 西南农业学报, 2017, 30(9):2053-2059. |
FAN B, HE G X, SHI L T, et al. Differences in nutrient content and nutrient resorption efficiencies of grass leaves among different species in arid-hot valley[J]. Southwest China J Agric Sci, 2017, 30(9):2053-2059. DOI: 10.16213/j.cnki.scjas.2017.9.022.
doi: 10.16213/j.cnki.scjas.2017.9.022 |
|
[46] |
KOBE R K, LEPCZYK C A, IYER M. Resorption efficiency decreases with increasing green leaf nutrients in a global data set[J]. Ecology, 2005, 86(10):2780-2792. DOI: 10.1890/04-1830.
doi: 10.1890/04-1830 |
[47] |
AN Y, WAN S Q, ZHOU X H, et al. Plant nitrogen concentration, use efficiency, and contents in a tallgrass prairie ecosystem under experimental warming[J]. Glob Change Biol, 2005, 11(10):1733-1744. DOI: 10.1111/j.1365-2486.2005.01030.x.
doi: 10.1111/j.1365-2486.2005.01030.x |
[48] |
AERTS R. Nutrient use efficiency in evergreen and deciduous species from heathlands[J]. Oecologia, 1990, 84(3):391-397. DOI: 10.1007/BF00329765.
doi: 10.1007/BF00329765 |
[49] | 严思维, 陈爱民, 林勇明, 等. 干热河谷区不同林龄赤桉叶中养分含量和再吸收率的比较及其线性回归分析[J]. 植物资源与环境学报, 2017, 26(1):39-46. |
YAN S W, CHEN A M, LIN Y M, et al. Comparisons on content and reabsorption rate of nutrients in leaf of Eucalyptus camaldulensis at different stand ages in arid-hot valley and their linear-regression analysis[J]. J Plant Resour Environ, 2017, 26(1):39-46. DOI: 10.3969/j.issn.1674-7895.2017.01.05.
doi: 10.3969/j.issn.1674-7895.2017.01.05 |
|
[50] | 闫涛, 杨凯, 朱教君. 辽东山区主要树种叶片氮、磷、钾再吸收[J]. 生态学杂志, 2014, 33(8):2005-2011. |
YAN T, YANG K, ZHU J J. Leaf N, P and K resorption of major tree species in a montane region of eastern Liaoning Province, China[J]. Chin J Ecol, 2014, 33(8):2005-2011. DOI: 10.13292/j.1000-4890.2014.0178.
doi: 10.13292/j.1000-4890.2014.0178 |
[1] | 徐子涵, 王磊, 崔明, 刘玉国, 赵紫晴, 李嘉豪. 南水北调水源区不同植被恢复模式的土壤化学计量特征[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 173-181. |
[2] | 刘青青, 黄智军, 马祥庆, 王正宁, 邢先双, 刘博. 遮阴条件下杉木幼苗生长和C、N、P化学计量特征的变化[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 74-82. |
[3] | 郭传阳, 林开敏, 郑鸣鸣, 任正标, 李茂, 郑宏, 游云飞, 陈志云. 间伐对杉木人工林土壤微生物生物量碳氮的短期影响[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 125-131. |
[4] | 郝玉琢,周磊,吴慧,王树力. 4种类型水曲柳人工林叶片-凋落物-土壤生态化学计量特征比较[J]. 南京林业大学学报(自然科学版), 2019, 43(04): 101-108. |
[5] | 王国兵,王瑞,徐瑾,曹国华,阮宏华. 生物炭对杨树人工林土壤微生物生物量碳、氮、磷及其化学计量特征的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(02): 1-6. |
[6] | 欧建德,吴志庄. 南方红豆杉人工林树干干形异常的诊断及处置[J]. 南京林业大学学报(自然科学版), 2017, 41(03): 95-99. |
[7] | 马杰,李兰海,刘翔,白磊,高利伟,朱咏莉. 伊犁河上游典型草地生态系统氮磷含量及化学计量特征[J]. 南京林业大学学报(自然科学版), 2017, 41(03): 7-14. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||