南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (1): 187-196.doi: 10.12302/j.issn.1000-2006.202012029
俞子承(), 凌聪, 陈赢男, 李淑娴, 尹佟明, 李小平*()
收稿日期:
2020-12-19
接受日期:
2021-04-14
出版日期:
2022-01-30
发布日期:
2022-02-09
通讯作者:
李小平
基金资助:
YU Zicheng(), LING Cong, CHEN Yingnan, LI Shuxian, YIN Tongming, LI Xiaoping*()
Received:
2020-12-19
Accepted:
2021-04-14
Online:
2022-01-30
Published:
2022-02-09
Contact:
LI Xiaoping
摘要:
【目的】建立雄性二倍体毛白杨再生体系,构建稳定的遗传转化方法,为进一步研究毛白杨基因功能提供试验平台。【方法】以雄性二倍体毛白杨的幼嫩茎段和叶片为外植体,1/2 MS为基本培养基,通过调整6-BA、IAA和TDZ激素浓度进行再生体系筛选;采用农杆菌EHA105介导叶盘法,控制预培养时间、菌液浓度、侵染时间、共培养时间和卡那霉素筛选浓度,进行遗传转化;以幼嫩叶片原生质体为受体细胞,PEG介导转化荧光标记基因EGFP,进行瞬时表达。【结果】雄性二倍体毛白杨再生过程包括继代、芽伸长和生根3个阶段,其培养基组分分别为1/2 MS+0.5 mg/L 6-BA+0.5 mg/L NAA+0.005 mg/L TDZ、1/2 MS+0.5 mg/L 6-BA+0.3 mg/L NAA和1/2 MS+0.3 mg/L NAA+0.5 mg/L IBA,该条件下生根率为96.7%,增殖系数为4.47。遗传转化过程包括预培养、农杆菌侵染、共培养、抗性筛选和生根5个阶段,其中预培养为12 h、农杆菌浓度OD600为0.4、侵染时间为20 min、共培养时间为24 h、卡那霉素(30 mg/L)筛选45 d和抗性苗生根20 d。试验共获得86株抗性植株,其中14株分子鉴定结果为阳性。在40% PEG4000的介导下,EGFP基因瞬间转化效率为50%。【结论】雄性二倍体毛白杨再生周期短、遗传转化稳定,是杨树基础研究的理想材料。本研究拓宽了杨树遗传转化体系,为杨树分子辅助育种提供了新途径。
中图分类号:
俞子承,凌聪,陈赢男,等. 雄性二倍体毛白杨再生体系的构建和遗传转化的研究[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 187-196.
YU Zicheng, LING Cong, CHEN Yingnan, LI Shuxian, YIN Tongming, LI Xiaoping. Establishment of regeneration system and study on genetic transformation for male diploid Populus tomentosa[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(1): 187-196.DOI: 10.12302/j.issn.1000-2006.202012029.
表1
外植体消毒筛选试验结果"
处理 treatment | 消毒时间 disinfection time | 种植数 planting number | 污染数 pollution number | 污染率 pollution rate | 褐化率 browning rate | 死亡率 death rate | 显著性分析 sig. | ||
---|---|---|---|---|---|---|---|---|---|
70%乙醇/s 70% ethanol | 次氯酸钠/min sodium hypochlorite | ||||||||
1 | 20 | 5 | 50 | 46 | 0.92 | 0.55 | 0.34 | a | |
2 | 20 | 10 | 50 | 43 | 0.86 | 0.62 | 0.25 | b | |
3 | 20 | 15 | 50 | 39 | 0.78 | 0.72 | 0.36 | ac | |
4 | 30 | 5 | 50 | 22 | 0.44 | 0.54 | 0.37 | ac | |
5 | 30 | 10 | 50 | 28 | 0.56 | 0.55 | 0.44 | d | |
6 | 30 | 15 | 50 | 28 | 0.56 | 0.48 | 0.86 | e | |
7 | 40 | 5 | 50 | 37 | 0.74 | 0.50 | 0.70 | f | |
8 | 40 | 10 | 50 | 33 | 0.66 | 0.52 | 0.62 | g | |
9 | 40 | 15 | 50 | 30 | 0.60 | 0.53 | 0.77 | h |
图2
雄性二倍体毛白杨外植体消毒、叶盘分化以及不同激素处理下的生根情况 A-B.消毒disinfection;A.正常外植体normal explants;B.消毒后死亡的外植体explants dead after disinfection;C-D.叶盘分化情况differentiation of leaf discs;C.正常分化的叶盘normal differentiated leaf discs;D.褐化死亡的叶盘browning leaf discs;E-G.不同激素下的生根情况rooting with different hormones;E.仅添加IBA;F.仅添加NAA only NAA added;G.同时添加了IBA与NAA IBA and NAA both added。"
表4
激素配比对增殖继代培养的影响"
处理 treatment | 外源激素/ (mg·L-1) exogenous hormone | 平均增殖 系数 average multiplication coefficient | 显著性分析 sig. | ||
---|---|---|---|---|---|
6-BA | NAA | TDZ | |||
1 | 0.3 | 0.3 | 0.005 | 1.60 | c |
2 | 0.3 | 0.5 | 0.010 | 2.10 | c |
3 | 0.3 | 0.7 | 0.015 | 2.70 | c |
4 | 0.5 | 0.3 | 0.015 | 4.47 | abc |
5 | 0.5 | 0.5 | 0.005 | 6.63 | a |
6 | 0.5 | 0.7 | 0.010 | 3.00 | ab |
7 | 0.7 | 0.3 | 0.010 | 3.43 | bc |
8 | 0.7 | 0.5 | 0.015 | 4.10 | abc |
9 | 0.7 | 0.7 | 0.005 | 4.03 | abc |
表6
预培养和共培养时间对毛白杨产生抗性芽的影响"
处理 treatment | 时间/h time | 接种数/ 个 plants number | 产生抗性 芽叶盘数/ 个resistant buds number | 抗性芽 获得率/ %resistant buds rate | 显著性 分析 sig. |
---|---|---|---|---|---|
预培养 pre-culture | 0 | 100 | 7 | 7 | a |
12 | 100 | 8 | 9 | b | |
24 | 100 | 2 | 2 | c | |
48 | 100 | 0 | 0 | d | |
共培养 co-cultivation | 8 | 50 | 0 | 0 | a |
16 | 50 | 2 | 4 | a | |
24 | 50 | 3 | 6 | b | |
32 | 50 | 1 | 2 | a | |
40 | 50 | 0 | 0 | a | |
48 | 50 | 1 | 2 | a | |
56 | 50 | 0 | 0 | a |
表7
侵染菌液浓度、侵染时间对毛白杨抗性芽的影响"
菌液浓度 OD600 | 侵染时间/ min infection time | 叶盘数 plants number | 产生抗性 芽的叶盘数 resistant buds number | 抗性芽 获得率/% resistant buds rate | 显著性 分析 sig. |
---|---|---|---|---|---|
0.2 | 10 | 45 | 0 | 0 | a |
20 | 48 | 1 | 2 | ab | |
30 | 40 | 2 | 5 | b | |
0.4 | 10 | 48 | 4 | 8 | c |
20 | 47 | 5 | 11 | c | |
30 | 48 | 2 | 4 | b | |
0.6 | 10 | 48 | 0 | 0 | a |
20 | 48 | 0 | 0 | a | |
30 | 48 | 0 | 0 | a | |
0.8 | 10 | 44 | 0 | 0 | a |
20 | 42 | 0 | 0 | a | |
30 | 48 | 0 | 0 | a |
[1] | ZHU Z T, ZHANG Z Y. The status and advances of genetic improvement of Populus tomentosa Carr.[J]. J Beijing For Univ (Engl Ed), 1997, 6(1):1-7. |
[2] | ZHU Z T. Collection, conservation and breeding studies of gene resources of Populus tomentosa in China[C]// International Poplar Commission. Beijing: Ad Hoc Committee of Poplar and Willow Breeding, 1988: 5-8. |
[3] |
李少锋, 苏晓华, 张冰玉. 林木基因克隆研究进展[J]. 植物学报, 2011, 46(1):79-107.
doi: 10.3724/SP.J.1259.2011.00079 |
LI S F, SU X H, ZHANG B Y. Research progress in gene cloning in forest trees[J]. Bull Bot, 2011, 46(1):79-107.DOI: 10.3724/SP.J.1259.2011.00079.
doi: 10.3724/SP.J.1259.2011.00079 |
|
[4] |
MOVAHEDI A, ZHANG J, AMIRIAN R, et al. An efficient Agrobacterium-mediated transformation system for poplar[J]. Int J Mol Sci, 2014, 15(6):10780-10793.DOI: 10.3390/ijms150610780.
doi: 10.3390/ijms150610780 |
[5] | 龙萃, 庞晓明, 曹冠琳, 等. MdSPDS1基因导入毛白杨的遗传转化体系优化研究[J]. 北京林业大学学报, 2010, 32(5):21-26. |
LONG C, PANG X M, CAO G L, et al. A study on the efficient protocol for transforming MdSPDS1 gene into Populus tomentosa Carr[J]. J Beijing For Univ, 2010, 32(5):21-26.DOI: 10.13332/j.1000-1522.2010.05.013.
doi: 10.13332/j.1000-1522.2010.05.013 |
|
[6] |
DU N X, LIU X, LI Y, et al. Genetic transformation of Populus tomentosa to improve salt tolerance[J]. Plant Cell Tissue Organ Cult (PCTOC), 2012, 108(2):181-189.DOI: 10.1007/s11240-011-0026-4.
doi: 10.1007/s11240-011-0026-4 |
[7] |
JIA Z, GOU J, SUN Y, et al. Enhanced resistance to fungal pathogens in transgenic Populus tomentosa Carr.by overexpression of an nsLTP-like antimicrobial protein gene from motherwort (Leonurus japonicus)[J]. Tree Physiol, 2010, 30(12):1599-1605.DOI: 10.1093/treephys/tpq093.
doi: 10.1093/treephys/tpq093 |
[8] |
ZELASCO S, RESSEGOTTI V, CONFALONIERI M, et al. Evaluation of MAT-vector system in white poplar (Populus alba L.) and production of ipt marker-free transgenic plants by ‘single-step transformation’[J]. Plant Cell Tissue Organ Cult, 2007, 91(1):61-72.DOI: 10.1007/s11240-007-9278-4.
doi: 10.1007/s11240-007-9278-4 |
[9] | 杜晓艳. 三种杨树再生体系的建立及青海青杨遗传转化的研究[D]. 重庆:西南大学, 2010. |
DU X Y. The establishment of regeneration systems of three Populus and research of genetic transformation of Populus cathayana Rehd.var.Qinghai[D]. Chongqing:Southwest University, 2010. | |
[10] |
CSEKE L J, CSEKE S B, PODILA G K. High efficiency poplar transformation[J]. Plant Cell Rep, 2007, 26(9):1529-1538.DOI: 10.1007/s00299-007-0365-0.
doi: 10.1007/s00299-007-0365-0 |
[11] |
YEVTUSHENKO D P, MISRA S. Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L.× P.maximowiczii A.Henry[J]. Plant Cell Rep, 2010, 29(3):211-221.DOI: 10.1007/s00299-009-0806-z.
doi: 10.1007/s00299-009-0806-z |
[12] |
DENG W, LUO K M, LI Z G, et al. A novel method for induction of plant regeneration via somatic embryogenesis[J]. Plant Sci, 2009, 177(1):43-48.DOI: 10.1016/j.plantsci.2009.03.009.
doi: 10.1016/j.plantsci.2009.03.009 |
[13] |
MOHAN J S. Tissue culture-derived variation in crop improvement[J]. Euphytica, 2001, 118(2):153-166.DOI: 10.1023/A:1004124519479.
doi: 10.1023/A:1004124519479 |
[14] | 王富刚, 张静. 三倍体毛白杨的组织培养试验研究[J]. 现代农业科技, 2010(13):222,224. |
WANG F G ZHANG J. Experimental study on tissue culture of triploid Populus tomentosa[J]. Mod Agric Sci Technol, 2010(13):222,224.DOI: 10.3969/j.issn.1007-5739.2010.13.150.
doi: 10.3969/j.issn.1007-5739.2010.13.150 |
|
[15] | 李春利. 毛白杨遗传转化体系的优化和AtPAP2的转基因研究[D]. 南京:南京农业大学, 2015. |
LI C L. The optimization of genetic transformition system and the transgenic research of AtPAP2 in Populous tomentosa[D]. Nanjing:Nanjing Agricultural University, 2015. | |
[16] | 鲁好君. 毛白杨遗传转化体系的建立及GOC高光效转基因植株表型分析[D]. 广州:华南农业大学, 2017. |
LU H J. Establiashment of Populus tomentosa carrière genetic transformation system and phenotypic analysis of transgenic plants with high photosynthetic efficiency[D]. Guangzhou:South China Agricultural University, 2017. | |
[17] |
WEI F, ZHAO F F, TIAN B M. In vitro regeneration of Populus tomentosa from petioles[J]. J For Res, 2017, 28(3):465-471.DOI: 10.1007/s11676-016-0319-x.
doi: 10.1007/s11676-016-0319-x |
[18] |
Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution[J]. Nature, 2012, 485(7400):635-641.DOI: 10.1038/nature11119.
doi: 10.1038/nature11119 |
[19] |
TUSKAN G A, DIFAZIO S, JANSSON S, et al. The genome of black cottonwood,Populus trichocarpa (Torr.& Gray)[J]. Science, 2006, 313(5793):1596-1604.DOI: 10.1126/science.1128691.
doi: 10.1126/science.1128691 |
[20] |
BABAOGLU M, YORGANCILAR M. TDZ-specific plant regeneration in salad burnet[J]. Plant Cell Tissue Organ Cult, 2000, 63(1):31-34.DOI: 10.1023/A:1006474002186.
doi: 10.1023/A:1006474002186 |
[21] |
LI J J, WU Y M, WANG T, et al. In vitro direct organogenesis and regeneration of Medicago sativa[J]. Biol Plant, 2009, 53(2):325-328.DOI: 10.1007/s10535-009-0059-2.
doi: 10.1007/s10535-009-0059-2 |
[22] | 王紫萱, 易自力. 卡那霉素在植物转基因中的应用及其抗性基因的生物安全性评价[J]. 中国生物工程杂志, 2003, 23(6):9-13. |
WANG Z X, YI Z L. The application of kanamycin in transgenic plants and the biosafety assessment of Kanr gene[J]. Prog Biotechnol, 2003, 23(6):9-13.DOI: 10.13523/j.cb.20030603.
doi: 10.13523/j.cb.20030603 |
|
[23] |
YOO S D, CHO Y H, SHEEN J. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis[J]. Nat Protoc, 2007, 2(7):1565-1572.DOI: 10.1038/nprot.2007.199.
doi: 10.1038/nprot.2007.199 |
[24] | 胡凯, 张立军, 白雪梅, 等. 植物组织培养污染原因分析及外植体的消毒[J]. 安徽农业科学, 2007, 35(3):680-681. |
HU K, ZHANG L J, BAI X M, et al. Analysis of the cause of contamination and explant sterilization in plant tissue culture[J]. J Anhui Agric Sci, 2007, 35(3):680-681.DOI: 10.13989/j.cnki.0517-6611.2007.03.025.
doi: 10.13989/j.cnki.0517-6611.2007.03.025 |
|
[25] | 黄烈健, 王鸿. 林木植物组织培养及存在问题的研究进展[J]. 林业科学研究, 2016, 29(3):464-471. |
HUANG L J, WANG H. Advances in tissue culture techniques of trees and the problems existed[J]. For Res, 2016, 29(3):464-471.DOI: 10.13275/j.cnki.lykxyj.2016.03.024.
doi: 10.13275/j.cnki.lykxyj.2016.03.024 |
|
[26] | 王新. ‘凤丹’牡丹离体快繁技术研究[D]. 北京:北京林业大学, 2016. |
WANG X. In vitro rapid propagation of Paeonia ostii ‘Feng Dan’[D]. Beijing:Beijing Forestry University, 2016. | |
[27] | 李慧, 樊军锋, 高建社, 等. 毛白杨无性系30号组培再生体系的建立[J]. 北方园艺, 2012(3):110-113. |
LI H, FAN J F, GAO J S, et al. Establishment of tissue culture regeneration system of Populus tomentosa clone-30[J]. North Hortic, 2012(3):110-113. | |
[28] | LI M, WANG H F, YIN W L, et al. Improvement in salt tolerance of Populus tomentosa from transformation by a mtl-D gene[J]. For Stud China, 2006(4):20-24. |
[29] |
YANG M S, MI D, EWALD D, et al. Survival and escape of Agrobacterium tumefaciens in triploid hybrid lines of Chinese white poplar transformed with two insect-resistant genes[J]. Acta Ecol Sin, 2006, 26(11):3555-3561.DOI: 10.1016/S1872-2032(06)60055-3.
doi: 10.1016/S1872-2032(06)60055-3 |
[30] |
TAN B Y, XU M, CHEN Y, et al. Transient expression for functional gene analysis using Populus protoplasts[J]. Plant Cell Tissue Organ Cult (PCTOC), 2013, 114(1):11-18.DOI: 10.1007/s11240-013-0299-x.
doi: 10.1007/s11240-013-0299-x |
[1] | 高源, 孙佳彤, 周晨光, 姜立泉, 李伟, 李爽. LBD12转录因子调控毛果杨木材形成研究[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 29-38. |
[2] | 李梅, 施季森, 罗建中, 甘四明. 我国桉树遗传育种研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 41-50. |
[3] | 高燕, 莫建彬, 付艳茹, 奉树成. 铁线莲‘朱卡’组织培养技术及再生体系的建立[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 109-116. |
[4] | 张宇,陈肃,高源,黄海娇. BpMYB4基因在白桦中的遗传转化及低温胁迫应答反应[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 25-31. |
[5] | MALEKISamanehSadat,MOHAMMADIKourosh,季孔庶. 根癌农杆菌介导遗传转化烟草‘NC89'效率的影响因素[J]. 南京林业大学学报(自然科学版), 2018, 42(01): 27-34. |
[6] | 黄麟,杨济云,方玉兰,李秋成,梁燕,叶建仁. 杉木炭疽菌遗传转化及附着胞发育过程的细胞核行为观察[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 68-72. |
[7] | 袁德义,范晓明,谭晓风,曾艳玲,唐静,杨亚. 油茶带芽茎段及叶片离体培养再生体系的建立[J]. 南京林业大学学报(自然科学版), 2013, 37(05): 35-39. |
[8] | 曹友志,谭碧玥,王明庥,黄敏仁*. 利用杨树原生质体瞬时表达系统筛选杨生褐盘二孢菌效应因子蛋白[J]. 南京林业大学学报(自然科学版), 2012, 36(05): 31-36. |
[9] | 张林平,叶建仁,李月阳,黄麟,许剑涛,张扬. 根癌农杆菌介导的异角状拟盘多毛孢菌转化系统研究[J]. 南京林业大学学报(自然科学版), 2012, 36(01): 28-32. |
[10] | 魏开发. 水仙胚性愈伤的获得及农杆菌介导GUS基因的遗传转化[J]. 南京林业大学学报(自然科学版), 2009, 33(04): 33-. |
[11] | 杨春霞,陈英,黄敏仁,李火根. 拟南芥逆境诱导型启动子rd29A的克隆及活性检测[J]. 南京林业大学学报(自然科学版), 2008, 32(01): 10-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||