南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (1): 33-39.doi: 10.12302/j.issn.1000-2006.202002049
所属专题: "双碳”视域下的土壤碳
• 专题报道Ⅰ:“双碳”视域下的土壤碳(执行主编 阮宏华) • 上一篇 下一篇
朱珠1(), 徐侠1,*(), 杨赛兰1, 彭凡茜1, 张惠光2, 蔡斌2
收稿日期:
2020-02-29
接受日期:
2020-10-20
出版日期:
2022-01-30
发布日期:
2022-02-09
通讯作者:
徐侠
基金资助:
ZHU Zhu1(), XU Xia1,*(), YANG Sailan1, PENG Fanxi1, ZHANG Huiguang2, CAI Bin2
Received:
2020-02-29
Accepted:
2020-10-20
Online:
2022-01-30
Published:
2022-02-09
Contact:
XU Xia
摘要:
在全球变化背景下,土壤有机碳的分解及其温度敏感性在陆地生态系统碳循环中的重要性备受关注。温度敏感性指数(Q10)微小的变化都可能导致未来土壤碳库大小评估的巨大偏差,充分了解土壤有机碳分解温度敏感性的调控机理对预测未来土壤碳变化具有重要意义。笔者对国内外已有研究进行分析,比较培养温度模式、底物质量、物理化学保护和微生物属性对土壤有机碳分解温度敏感性的影响。结果发现:①与传统的恒温模式相比,变温培养模式更好地克服了土壤微生物对恒定培养温度的适应性以及不同培养温度下底物消耗不均的缺点,能够更加准确地估算Q10。②较多的研究发现难分解有机碳的Q10大于易分解有机碳的Q10,但也有研究发现难分解有机碳的Q10并不比易分解有机碳的Q10高,这主要是由于土壤有机碳库的异质性造成的。③团聚体和矿物吸附保护通过改变底物有效性或者反应位点的底物浓度来影响土壤有机碳分解的温度敏感性。④微生物的生理特性、群落组成和结构也会对温度敏感性造成影响,温度变化会造成土壤微生物群落组成及其相关生理特征的变化,进一步引起相关功能基因丰度的改变,从而改变有机碳分解的温度敏感性。土壤有机碳分解及其温度敏感性是全球气候变化对碳循环影响研究中很重要的一部分,对它的精确估算有利于完善全球气候变化模型,对准确预测未来全球气候变化具有重要意义。
中图分类号:
朱珠,徐侠,杨赛兰,等. 陆地生态系统土壤有机碳分解温度敏感性研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 33-39.
ZHU Zhu, XU Xia, YANG Sailan, PENG Fanxi, ZHANG Huiguang, CAI Bin. A review on the temperature sensitivity of soil organic carbon decomposition in terrestrial ecosystem[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(1): 33-39.DOI: 10.12302/j.issn.1000-2006.202002049.
[1] |
RAICH J W, SCHLESINGER W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus B, 1992, 44(2):81-99. DOI: 10.1034/j.1600-0889.1992.t01-1-00001.x.
doi: 10.1034/j.1600-0889.1992.t01-1-00001.x |
[2] |
RAICH J W, TUFEKCIOGUL A. Vegetation and soil respiration: correlations and controls[J]. Biogeochemistry, 2000, 48(1):71-90. DOI: 10.1023/A:1006112000616.
doi: 10.1023/A:1006112000616 |
[3] |
XIAO H, SHI Z, LI Z, et al. Responses of soil respiration and its temperature sensitivity to nitrogen addition: a meta-analysis in China[J]. Applied Soil Ecology, 2020, 150:103484. DOI: 10.1016/j.apsoil.2019.103484.
doi: 10.1016/j.apsoil.2019.103484 |
[4] |
ALLISON S D. A trait-based approach for modelling microbial litter decomposition[J]. Ecology Letters, 2012, 15(9):1058-1070. DOI: 10.1111/j.1461-0248.2012.01807.x.
doi: 10.1111/j.1461-0248.2012.01807.x |
[5] |
BONAN G B, HARTMAN M D, PARTON W J, et al. Evaluating litter decomposition in earth system models with long-term litterbag experiments: an example using the Community Land Model version 4 (CLM4)[J]. Glob Chang Biol, 2013, 19(3):957-974. DOI: 10.1111/gcb.12031.
doi: 10.1111/gcb.12031 |
[6] |
LUO Y Q, AHLSTRÖM AHLSTRÖM, ALLISON S D, et al. Toward more realistic projections of soil carbon dynamics by Earth system models[J]. Global Biogeochemical Cycles, 2016, 30(1):40-56. DOI: 10.1002/2015gb005239.
doi: 10.1002/2015gb005239 |
[7] |
LIU Y, HE N P, ZHU J X, et al. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands[J]. Global Change Biology, 2017, 23(8):3393-3402. DOI: 10.1111/gcb.13613.
doi: 10.1111/gcb.13613 |
[8] |
BOND-LAMBERTY B, THOMSON A M. Temperature-associated increases in the global soil respiration record[J]. Nature, 2010, 464(7288):579-582. DOI: 10.1038/nature08930.
doi: 10.1038/nature08930 |
[9] | LI J, PEI J, PENDALL E, et al. Spatial heterogeneity of temperature sensitivity of soil respiration: a global analysis of field observations[J]. Soil Biology and Biochemistry, 2020, 141:107675.DPI: 10.1016/j.soilbio. 2019. 107675. |
[10] |
CORNWELL W K, CORNELISSEN J H C, AMATANGELO K, et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide[J]. Ecology Letters, 2008, 11(10):1065-1071. DOI: 10.1111/j.1461-0248.2008.01219.x.
doi: 10.1111/j.1461-0248.2008.01219.x |
[11] |
HOBBIE S E. Plant species effects on nutrient cycling: revisiting litter feedbacks[J]. Trends in Ecology & Evolution, 2015, 30(6):357-363. DOI: 10.1016/j.tree.2015.03.015.
doi: 10.1016/j.tree.2015.03.015 |
[12] |
MATULICH K L, MARTINY J B H. Microbial composition alters the response of litter decomposition to environmental change[J]. Ecology, 2015, 96(1):154-163. DOI: 10.1890/14-0357.1.
doi: 10.1890/14-0357.1 |
[13] |
LI J, HE N P, XU L, et al. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures[J]. Soil Biology and Biochemistry, 2017, 106(18-27). DOI: 10.1016/j.soilbio.2016.12.002.
doi: 10.1016/j.soilbio.2016.12.002 |
[14] |
YAN T, SONG H, WANG Z, et al. Temperature sensitivity of soil respiration across multiple time scales in a temperate plantation forest[J]. Sci Total Environ, 2019, 688:479-485. DOI: 10.1016/j.scitotenv.2019.06.318.
doi: 10.1016/j.scitotenv.2019.06.318 |
[15] |
ERHAGEN B, ÖQUIST M, SPARRMAN T, et al. Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material[J]. Global Change Biology, 2013, 19(12):3858-3871. DOI: 10.1111/gcb.12342.
doi: 10.1111/gcb.12342 |
[16] |
WARD S E, ORWIN K H, OSTLE N J, et al. Vegetation exerts a greater control on litter decomposition than climate warming in peatlands[J]. Ecology, 2015, 96(1):113-123. DOI: 10.1890/14-0292.1.
doi: 10.1890/14-0292.1 |
[17] |
XU X, SHI Z, LI D, et al. Soil properties control decomposition of soil organic carbon: results from data-assimilation analysis[J]. Geoderma, 2016, 262:235-242. DOI: 10.1016/j.geoderma.2015.08.038.
doi: 10.1016/j.geoderma.2015.08.038 |
[18] |
NOTTINGHAM A T, WHITAKER J, OSTLE N J, et al. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient[J]. Ecology Letters, 2019, 22(11):1889-1899. DOI: 10.1111/ele.13379.
doi: 10.1111/ele.13379 |
[19] |
ZHANG W, YUAN S, HU N, et al. Predicting soil fauna effect on plant litter decomposition by using boosted regression trees[J]. Soil Biology and Biochemistry, 2015, 82:81-86. DOI: 10.1016/j.soilbio.2014.12.016.
doi: 10.1016/j.soilbio.2014.12.016 |
[20] |
LI J Q, NIE M, PENDALL E, et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils[J]. Global Change Biology, 2020, 26(3):1873-1885.DOI: 10.1111/gcb.14838.
doi: 10.1111/gcb.14838 |
[21] |
RAICH J W, POTTER C S. Global patterns of carbon dioxide emissions from soils[J]. Global Biogeochemical Cycles, 1995, 9(1):23-36. DOI: 10.1029/94gb02723.
doi: 10.1029/94gb02723 |
[22] |
FANG C, MONCRIEFF J B. The dependence of soil CO2 efflux on temperature[J]. Soil Biology and Biochemistry, 2001, 33(2):155-165. DOI: 10.1016/S0038-0717(00)00125-5.
doi: 10.1016/S0038-0717(00)00125-5 |
[23] |
ZHU B, CHENG W X. Constant and diurnally-varying temperature regimes lead to different temperature sensitivities of soil organic carbon decomposition[J]. Soil Biology and Biochemistry, 2011, 43(4):866-869. DOI: 10.1016/j.soilbio.2010.12.021.
doi: 10.1016/j.soilbio.2010.12.021 |
[24] | 滕泽宇, 陈智文, 白震, 等. 恒、变温培养模式对土壤呼吸温度敏感性影响之异同[J]. 土壤通报, 2016, 47(1):47-53. |
TENG Z Y, CHEN Z W, BAI Z, et al. Comparison of temperature sensitivity of soil respiration between varying and constant temperature regimes[J]. Chinese Journal of Soil Science, 2016, 47(1):47-53. DOI: 10.19336/j.cnki.trtb.2016.01.008.
doi: 10.19336/j.cnki.trtb.2016.01.008 |
|
[25] |
CONANT R T, RYAN M G, ÅGREN G I, et al. Temperature and soil organic matter decomposition rates-synjournal of current knowledge and a way forward[J]. Global Change Biology, 2011, 17(11):3392-3404. DOI: 10.1111/j.1365-2486.2011.02496.x.
doi: 10.1111/j.1365-2486.2011.02496.x |
[26] |
CONANT R T, DRIJBER R A, HADDIX M L, et al. Sensitivity of organic matter decomposition to warming varies with its quality[J]. Global Change Biology, 2008, 14(4):868-877. DOI: 10.1111/j.1365-2486.2008.01541.x.
doi: 10.1111/j.1365-2486.2008.01541.x |
[27] |
LUO Y, WAN S, HUI D, et al. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature, 2001, 413(6856):622-625. DOI: 10.1038/35098065.
doi: 10.1038/35098065 |
[28] |
BRADFORD M A, WATTS B W, DAVIES C A. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms[J]. Global Change Biology, 2010, 16(5):1576-1588. DOI: 10.1111/j.1365-2486.2009.02040.x.
doi: 10.1111/j.1365-2486.2009.02040.x |
[29] |
LIU Y, HE N P, XU L, et al. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition[J]. Soil Biology and Biochemistry, 2019, 138:107596. DOI: 10.1016/j.soilbio.2019.107596.
doi: 10.1016/j.soilbio.2019.107596 |
[30] |
WALDROP M P, FIRESTONE M K. Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions[J]. Biogeochemistry, 2004, 67(2):235-248. DOI: 10.1023/B:BIOG.0000015321.51462.41.
doi: 10.1023/B:BIOG.0000015321.51462.41 |
[31] |
DING J Z, CHEN L Y, ZHANG B, et al. Linking temperature sensitivity of soil CO2 release to substrate, environmental, and microbial properties across alpine ecosystems[J]. Global Biogeochemical Cycles, 2016, 30(9):1310-1323. DOI: 10.1002/2015GB005333.
doi: 10.1002/2015GB005333 |
[32] |
ROBINSON J M, O’NEILL T A, RYBURN J, et al. Rapid laboratory measurement of the temperature dependence of soil respiration and application to changes in three diverse soils through the year[J]. Biogeochemistry, 2017, 133(1):101-112. DOI: 10.1007/s10533-017-0314-0.
doi: 10.1007/s10533-017-0314-0 |
[33] | 何念鹏, 刘远, 徐丽, 等. 土壤有机质分解的温度敏感性:培养与测定模式[J]. 生态学报, 2018, 38(11):4045-4051. |
HE N P, LIU Y, XU L, et al. Temperature sensitivity of soil organic matter decomposition: new insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11):4045-4051. DOI: 10.5846/stxb201705030815.
doi: 10.5846/stxb201705030815 |
|
[34] | 刘颖, 韩士杰, 胡艳玲, 等. 土壤温度和湿度对长白松林土壤呼吸速率的影响[J]. 应用生态学报, 2005, 16(9):1581-1585. |
LIU Y, HAN S J, HU Y L, et al. Effects of soil temperature and humidity on soil respiration rate under Pinus sylvestriformis forest[J]. Chinese Journal of Applied Ecology, 2005, 16(9):1581-1585.DOI: 10.13287/j.1001-9332.2005.0201.
doi: 10.13287/j.1001-9332.2005.0201 |
|
[35] | 刘颖, 韩士杰. 长白山四种森林土壤呼吸的影响因素[J]. 生态环境学报, 2009, 18(3):1061-1065. |
LIU Y, HAN S J. Factors controlling soil respiration in four types of forest of Changbai Mountains, China[J]. Ecology and Environment, 2009, 18(3):1061-1065.DOI: 10.16258/j.cnki.1674-5906.2009.03.065.
doi: 10.16258/j.cnki.1674-5906.2009.03.065 |
|
[36] | 王淼, 姬兰柱, 李秋荣, 等. 土壤温度和水分对长白山不同森林类型土壤呼吸的影响[J]. 应用生态学报, 2003, 14(8):1234-1238. |
WANG M, JI L Z, LI Q R, et al. Effects of soil temperature and moisture on soil respiration in different forest types in Changbai Mountain[J]. Chinese Journal of Applied Ecology, 2003, 14(8):1234-1238.DOI: 10.13287/j.1001-9332.2003.0276.
doi: 10.13287/j.1001-9332.2003.0276 |
|
[37] |
KNORR W, PRENTICE I C, HOUSE J I, et al. Long-term sensitivity of soil carbon turnover to warming[J]. Nature, 2005, 433(7023):298-301. DOI: 10.1038/nature03226.
doi: 10.1038/nature03226 |
[38] |
KARHU K, FRITZE H, HÄMÄLÄINEN K, et al. Temperature sensitivity of soil carbon fractions in boreal forest soil[J]. Ecology, 2010, 91(2):370-376. DOI: 10.1890/09-0478.1.
doi: 10.1890/09-0478.1 |
[39] |
HOPKINS F M, TORN M S, TRUMBORE S E. Warming accelerates decomposition of decades-old carbon in forest soils[J]. Proceedings of the National Academy of Sciences, 2012, 109(26):E1753-E1761. DOI: 10.1073/pnas.1120603109.
doi: 10.1073/pnas.1120603109 |
[40] |
BRADFORD M A, WIEDER W R, BONAN G B, et al. Managing uncertainty in soil carbon feedbacks to climate change[J]. Nature Climate Change, 2016, 6(8):751-758. DOI: 10.1038/nclimate3071.
doi: 10.1038/nclimate3071 |
[41] |
LEFÈVRE R, BARRÉ P, MOYANO F E, et al. Higher temperature sensitivity for stable than for labile soil organic carbon-Evidence from incubations of long-term bare fallow soils[J]. Global Change Biology, 2014, 20(2):633-640. DOI: 10.1111/gcb.12402.
doi: 10.1111/gcb.12402 |
[42] |
ZHOU X H, XU X, ZHOU G Y, et al. Temperature sensitivity of soil organic carbon decomposition increased with mean carbon residence time: field incubation and data assimilation[J]. Global Change Biology, 2018, 24(2):810-822. DOI: 10.1111/gcb.13994.
doi: 10.1111/gcb.13994 |
[43] |
ÅGREN G I. Temperature dependence of old soil organic matter[J]. AMBIO: A Journal of the Human Environment, 2000, 29(1):55. DOI: 10.1579/0044-7447-29.1.55.
doi: 10.1579/0044-7447-29.1.55 |
[44] |
BOSATTA E, ÅGREN G I. Soil organic matter quality interpreted thermodynamically[J]. Soil Biology and Biochemistry, 1999, 31(13):1889-1891. DOI: 10.1016/S0038-0717(99)00105-4.
doi: 10.1016/S0038-0717(99)00105-4 |
[45] |
HADDIX M L, PLANTE A F, CONANT R T, et al. The role of soil characteristics on temperature sensitivity of soil orgnic matter[J]. Soil Science Society of America Journal, 2011, 75(1):56-68. DOI: 10.2136/sssaj2010.0118.
doi: 10.2136/sssaj2010.0118 |
[46] |
HARTLEY I P, INESON P. Substrate quality and the temperature sensitivity of soil organic matter decomposition[J]. Soil Biology and Biochemistry, 2008, 40(7):1567-1574. DOI: 10.1016/j.soilbio.2008.01.007.
doi: 10.1016/j.soilbio.2008.01.007 |
[47] |
WANG G B, ZHOU Y, XU X, et al. Temperature sensitivity of soil organic carbon mineralization along an elevation gradient in the Wuyi Mountains, China[J]. PLoS One, 2013, 8(1):e53914. DOI: 10.1371/journal.pone.0053914.
doi: 10.1371/journal.pone.0053914 |
[48] |
XU X, ZHOU Y, RUAN H, et al. Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China[J]. Soil Biology and Biochemistry, 2010, 42(10):1811-1815. DOI: 10.1016/j.soilbio.2010.06.021.
doi: 10.1016/j.soilbio.2010.06.021 |
[49] |
LIN J J, ZHU B, CHENG W X. Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon[J]. Glob Chang Biol, 2015, 21(12):4602-4612. DOI: 10.1111/gcb.13071.
doi: 10.1111/gcb.13071 |
[50] |
FIERER N, ALLEN A S, SCHIMEL J P, et al. Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons[J]. Global Change Biology, 2003, 9(9):1322-1332. DOI: 10.1046/j.1365-2486.2003.00663.x.
doi: 10.1046/j.1365-2486.2003.00663.x |
[51] |
PANG X Y, ZHU B, LÜ X, et al. Labile substrate availability controls temperature sensitivity of organic carbon decomposition at different soil depths[J]. Biogeochemistry, 2015, 126(1):85-98. DOI: 10.1007/s10533-015-0141-0.
doi: 10.1007/s10533-015-0141-0 |
[52] |
HICKS PRIES C E, CASTANHA C, PORRAS R C, et al. The whole-soil carbon flux in response to warming[J]. Science, 2017, 355(6332):1420-1423. DOI: 10.1126/science.aal1319.
doi: 10.1126/science.aal1319 |
[53] |
SIHI D, INGLETT P W, INGLETT K S. Carbon quality and nutrient status drive the temperature sensitivity of organic matter decomposition in subtropical peat soils[J]. Biogeochemistry, 2016, 131(1):103-119. DOI: 10.1007/s10533-016-0267-8.
doi: 10.1007/s10533-016-0267-8 |
[54] |
DAVIDSON E A, TRUMBORE S E, AMUNDSON R. Soil warming and organic carbon content[J]. Nature, 2000, 408(6814):789-790. DOI: 10.1038/35048672.
doi: 10.1038/35048672 |
[55] |
FANG C M, SMITH P, MONCRIEFF J B, et al. Similar response of labile and resistant soil organic matter pools to changes in temperature[J]. Nature, 2005, 433(7021):57-59. DOI: 10.1038/nature03138.
doi: 10.1038/nature03138 |
[56] |
DAVIDSON E A, JANSSENS I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006, 440(7081):165-173. DOI: 10.1038/nature04514.
doi: 10.1038/nature04514 |
[57] |
DASH P K, BHATTACHARYYA P, ROY K S, et al. Environmental constraints’ sensitivity of soil organic carbon decomposition to temperature, management practices and climate change[J]. Ecological Indicators, 2019, 107:105644. DOI: 10.1016/j.ecolind.2019.105644.
doi: 10.1016/j.ecolind.2019.105644 |
[58] |
TISDALL J M, OADES J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2):141-163. DOI: 10.1111/j.1365-2389.1982.tb01755.x.
doi: 10.1111/j.1365-2389.1982.tb01755.x |
[59] |
GERSHENSON A, BADER N E, CHENG W X. Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition[J]. Global Change Biology, 2009, 15(1):176-183. DOI: 10.1111/j.1365-2486.2008.01827.x.
doi: 10.1111/j.1365-2486.2008.01827.x |
[60] |
SOLLINS P, HOMANN P S, CALDWELL B A. Stabilization and destabilization of soil organic matter: mechanisms and controls[J]. Geoderma, 1996, 74:65-105. DOI: 10.1016/S0016-7061(96)00036-5.
doi: 10.1016/S0016-7061(96)00036-5 |
[61] |
KARHU K, HILASVUORI E, JÄRVENPÄÄ M, et al. Similar temperature sensitivity of soil mineral-associated organic carbon regardless of age[J]. Soil Biology and Biochemistry, 2019, 136:107527. DOI: 10.1016/j.soilbio.2019.107527.
doi: 10.1016/j.soilbio.2019.107527 |
[62] |
GHOSH A, BHATTACHARYYA R, DWIVEDI B S, et al. Temperature sensitivity of soil organic carbon decomposition as affected by long-term fertilization under a soybean based cropping system in a sub-tropical Alfisol[J]. Agriculture, Ecosystems & Environment, 2016, 233:202-213. DOI: 10.1016/j.agee.2016.09.010.
doi: 10.1016/j.agee.2016.09.010 |
[63] | 周学雅, 陈志杰, 耿世聪, 等. 氮沉降对长白山森林土壤团聚体内碳、氮含量的影响[J]. 应用生态学报, 2019, 30(5):1543-1552. |
ZHOU X Y, CHEN Z J, GENG S C, et al. Effects of nitrogen deposition on carbon and nitrogen contents in soil aggregates in temperate forests of Changbai Mountain, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5):1543-1552.DOI: 10.13287/j.1001-9332.201905.025.
doi: 10.13287/j.1001-9332.201905.025 |
|
[64] |
POIRIER N, SOHI S P, GAUNT J L, et al. The chemical composition of measurable soil organic matter pools[J]. Organic Geochemistry, 2005, 36(8):1174-1189. DOI: 10.1016/j.orggeochem.2005.03.005.
doi: 10.1016/j.orggeochem.2005.03.005 |
[65] |
SIX J, CONANT R T, PAUL E A, et al. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils[J]. Plant Soil, 2002, 241(2):155-176. DOI: 10.1023/A:1016125726789.
doi: 10.1023/A:1016125726789 |
[66] |
DUNGAIT J A J, HOPKINS D W, GREGORY A S, et al. Soil organic matter turnover is governed by accessibility not recalcitrance[J]. Global Change Biology, 2012, 18(6):1781-1796. DOI: 10.1111/j.1365-2486.2012.02665.x.
doi: 10.1111/j.1365-2486.2012.02665.x |
[67] |
QIN S Q, CHEN L Y, FANG K, et al. Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities[J]. Science Advances, 2019, 5(7): eaau1218. DOI: 10.1126/sciadv.aau1218.
doi: 10.1126/sciadv.aau1218 |
[68] |
POEPLAU C, KÄTTERER T, LEBLANS N I W, et al. Sensitivity of soil carbon fractions and their specific stabilization mechanisms to extreme soil warming in a subarctic grassland[J]. Global Change Biology, 2017, 23(3):1316-1327. DOI: 10.1111/gcb.13491.
doi: 10.1111/gcb.13491 |
[69] |
LEIFELD J, KOGEL-KNABNER I. Soil organic matter fractions as early indicators for carbon stock changes under different land-use?[J]. Geoderma, 2005, 124(1):143-155. DOI: 10.1016/j.geoderma.2004.04.009.
doi: 10.1016/j.geoderma.2004.04.009 |
[70] |
PLANTE A F, CONANT R T, PAUL E A, et al. Acid hydrolysis of easily dispersed and microaggregate-derived silt-and clay-sized fractions to isolate resistant soil organic matter[J]. European Journal of Soil Science, 2006, 57(4):456-467. DOI: 10.1111/j.1365-2389.2006.00792.x.
doi: 10.1111/j.1365-2389.2006.00792.x |
[71] |
MOINET G Y K, HUNT J E, KIRSCHBAUM M U F, et al. The temperature sensitivity of soil organic matter decomposition is constrained by microbial access to substrates[J]. Soil Biology and Biochemistry, 2018, 116:333-339. DOI: 10.1016/j.soilbio.2017.10.031.
doi: 10.1016/j.soilbio.2017.10.031 |
[72] |
SCHNECKER J, BORKEN W, SCHINDLBACHER A, et al. Little effects on soil organic matter chemistry of density fractions after seven years of forest soil warming[J]. Soil Biology and Biochemistry, 2016, 103:300-307. DOI: 10.1016/j.soilbio.2016.09.003.
doi: 10.1016/j.soilbio.2016.09.003 |
[73] |
ROWLEY M C, GRAND S, ADATTE T, et al. A cascading influence of calcium carbonate on the biogeochemistry and pedogenic trajectories of subalpine soils,Switzerland[J]. Geoderma, 2020, 361:114065. DOI: 10.1016/j.geoderma.2019.114065.
doi: 10.1016/j.geoderma.2019.114065 |
[74] |
FANG K, QIN S Q, CHEN L Y, et al. Al/Fe mineral controls on soil organic carbon stock across Tibetan alpine grasslands[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(2):247-259. DOI: 10.1029/2018jg004782.
doi: 10.1029/2018jg004782 |
[75] |
KARHU K, AUFFRET M D, DUNGAIT J A J, et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response[J]. Nature, 2014, 513(7516):81-84. DOI: 10.1038/nature13604.
doi: 10.1038/nature13604 |
[76] |
JANSSON J K, HOFMOCKEL K S. Soil microbiomes and climate change[J]. Nature Reviews Microbiology, 2020, 18(1):35-46. DOI: 10.1038/s41579-019-0265-7.
doi: 10.1038/s41579-019-0265-7 |
[77] |
NOTTINGHAM A T, BÅÅTH E, REISCHKE S, et al. Adaptation of soil microbial growth to temperature: using a tropical elevation gradient to predict future changes[J]. Glob Chang Biol, 2019, 25(3):827-838. DOI: 10.1111/gcb.14502.
doi: 10.1111/gcb.14502 |
[78] |
KLIMEK B, CHODAK M, JAZWA M, et al. Soil physicochemical and microbial drivers of temperature sensitivity of soil organic matter decomposition under boreal forests[J]. Pedosphere, 2020, 30(4):528-534. DOI: 10.1016/S1002-0160(17)60400-4.
doi: 10.1016/S1002-0160(17)60400-4 |
[79] | 范分良, 黄平容, 唐勇军, 等. 微生物群落对土壤微生物呼吸速率及其温度敏感性的影响[J]. 环境科学, 2012, 33(3):932-937. |
FAN F L, HUANG P R, TANG Y J, et al. Altered microbial communities change soil respiration rates and their temperature sensitivity[J]. Chinese Journal of Environmental Science, 2012, 33(3):932-937. | |
[80] |
BIASI C, JOKINEN S, MARUSHCHAK M E, et al. Microbial respiration in arctic upland and peat soils as a source of atmospheric carbon dioxide[J]. Ecosystems, 2014, 17(1):112-126. DOI: 10.1007/s10021-013-9710-z.
doi: 10.1007/s10021-013-9710-z |
[81] |
BIASI C, RUSALIMOVA O, MEYER H, et al. Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs[J]. Rapid Communications in Mass Spectrometry, 2005, 19(11):1401-1408. DOI: 10.1002/rcm.1911.
doi: 10.1002/rcm.1911 |
[82] |
BALSER T C, WIXON D L. Investigating biological control over soil carbon temperature sensitivity[J]. Global Change Biology, 2009, 15(12):2935-2949. DOI: 10.1111/j.1365-2486.2009.01946.x.
doi: 10.1111/j.1365-2486.2009.01946.x |
[83] | 曹子铖, 程淑兰, 方华军, 等. 温带针阔叶林土壤有机碳动态和微生物群落结构对有机氮添加的响应特征[J]. 土壤学报, 2020, 57(4):963-974. |
CAO Z C, CHENG S L, FANG H J, et al. Responses of soil organic carbon dynamics and microbial community structure to organic nitrogen fertilization in the temperate needle-broadleaved mixed forest[J]. Acta Pedologica Sinica, 2020, 57(4):963-974. DOI: 10.11766/trxb201908130350.
doi: 10.11766/trxb201908130350 |
|
[84] |
PATERSON E, OSLER G, DAWSON L A, et al. Labile and recalcitrant plant fractions are utilised by distinct microbial communities in soil: independent of the presence of roots and mycorrhizal fungi[J]. Soil Biology and Biochemistry, 2008, 40(5):1103-1113. DOI: 10.1016/j.soilbio.2007.12.003.
doi: 10.1016/j.soilbio.2007.12.003 |
[85] |
BRIONES M J I, MCNAMARA N P, POSKITT J, et al. Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils[J]. Global Change Biology, 2014, 20(9):2971-2982. DOI: 10.1111/gcb.12585.
doi: 10.1111/gcb.12585 |
[1] | 孔雨光,,王因花,张金池,储冬生,张东海,王如岩,张小庆. 苏北泥质海岸水杉林地土壤的异养呼吸[J]. 南京林业大学学报(自然科学版), 2010, 34(01): 15-18. |
[2] | 唐燕飞,王国兵,阮宏华. 土壤呼吸对温度的敏感性研究综述[J]. 南京林业大学学报(自然科学版), 2008, 32(01): 128-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||